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Abstract. Expert systems 
are an excellent way to organ­
ize existing knowledge for use 
by land managers or research 
scientists. Our objective was 
to develop an expert system 
that would deal with endemic 
(low) levels of mountain pine 
beetle in the lodgepole pine 
type of the Intermountain West. 
Initially, we wrote a knowl­
edge acquisition program to 
help obtain information on the 
functioning of the System from 
five expertforest entomologists. 
This information was then fed 
into an expert system genera­
tor to produce the expert sys­
tem. Users provide parame­
ters (e.g., average diameter at 
breast height of both the stand 
and infested trees, stand eleva­
tion, and various temperature 
values) pertinent to the sti:md 
in question. The expert system 
uses this information to deter­
mine if the mountain pine beetle 
population will increase, de­
crease, or remain static for the 
coming year. Users of the 
system say it mimics the cur-· 
rent knowledge closely and 
gives useful results. Following 
model verification, we will 
provide it as a tool for use by 
resource managers. We an­
ticipate that the primary use 
for expert systems of this type 
will be to identify areas where 
further research is required . 
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Lodgepole pine (Pinus contorta Doug!. var. latifolia Engelm.) 
forests cover 13 million acres in the western United Sta~es (Wellner 
1975) and approximately 50 million acres in western Canada (McDou­
gal 1975). Most of these acres are susceptib~~ to attack by moqnta4J. 
pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: Scoiiti­
dae]). which is one of the main killers of lodgepole pine. During full­
blown mountain pine beetle epidemics, millions oflodgepole pine are 
killed annually in the western United States and western Canada 
(Amman et al. 1988). 

I I \r:. 

The USDA Forest Service Mountain Pine Beede Project1 initiated a · 
research agreement with the Department of Forest Resources at Utah 

1 Gene Amman, Project Leader, USDA Forest Service, Intermountain Research · 
Station, Ogden, Utah 84401 
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State University, Logan, Utah, to evaluate potential 
applications of artificial intelligence (AI) in their 
research program. During the past 20 years, re­
searchers on this project have developed an exten­
siveknowledge base about the epidemic (catastrophic 
or outbreak) phase of mountain pine beetle infesta­
tions in lodgepole pine forests. This information has 
provided a better understanding of the dynamics of 
mountain pine beetle at outbreak levels (Amman and 
Cole 1983, Cole and Amman 1980, Colpptal. 1985). 

Direct control of mountain pine beetle during 
outbreak is usually only minimally successful, and 

. more attention should be placed on silvicultural 
means of suppressing mountain pine beetle popula-

. tions before an outbreak occurs. Better understand­
ing of thedyna.riues oflow or endemic level (prior to 

outbreak) mountain pine beetle populations should 
ultimately lead to the development of preventive 
strategies. 

Years of working with epidemic mountain pine 
beetle populations have improved knowledge of 
endemic situations. Various biological interactions 
(e.g., diseases and mountain pine beetle populations) 
are being evaluated to ascertain their relationship 
with endemic mountain pine beetle populations~ · 
Research and existing knowledge will form the basis 
for developing useful expert systems. 

The focus on endemic population levels repre­
sents a new and largely unexplored aspect of re­
search into mountain pine beetle population dynam­
ics. Researchers have extrapolated from findings 
based on years of studies of epidemic outbreaks of 
mountain pine beetle in lodgepole pihe. Their ex­
trapolations were based on professional judgments 
accumulated during years of informal, unstructured 
obsexvation. Little empirical information is avail­
able to help researchers develop models to guide 
research on the population dynamics of this pest. 

We sought to capture the largely intuitive knowl­
edge of these researchers and to organize it into a 
research expert system with communication and 
feedback capabilities. This dialogue between the 
expert system developer and the expert is the prime 
means of extracting information. Feedback makes it 
possible to explore aspects that experts had not 

previously considered. This paper discusses per­
spectives that influenced design of the investigation, 
the procedures used to develop the system, our 
findings, and recommendations for fUrther work. 

Nature and Focus 
of the Investigation 

This exploratory study details the development of 
an expert system that was designed primarily as a 
resealch tooL This expert system will be scrutinized 
by other experts, refined, and further evaluated for 
applicability to specific management situations. The 
investigationinvolvedfiveforestentomologistsfrom 
.bOth Forest Service Resea.teh and State and Private 
Forestry. The foresters who were selecteC1.work in 
the western United States and are considered moun­
tain pine beetle experts by their peers. 

Mountain pine beetles have a dramatic impact on 
lodgepole pine forests in the West, and a better 
understanding of the interactions between the beetle 
and the tree in low-level infestations is critical to 
minimize loss. An expert system would be one way 
to integrate and utilize existing knowledge. To 
explore this possibility, we 1) extracted and repre­
sented the experts' knowledge about endemic popu­
lation dynamics of mountain pine beetle and deter­
mined how this knowledge guides their work, 2) let 
the experts review this information (via summary 
computer outputs) for clarification and refinement, 
and 3) developed an expert system that reflected 
their conceptual models of the knowledge domain. 
This system incoxporated_ the steps that the expert 
needed to anive at a logical ·conclusion. 

We are now evaluating how experisystems can be 
used to stimulate and focus dialogue among re­
searchers concerning low levels of mountain pine 
beetle in lodgepole pine forests. illtimately, these 
programs will be used to identify high-risk forest 
stands that could be treated to prevent catastrophic 
losses. The programs will be evaluated by compar­
ing results with the findings from field studies· in· 
lodgepole pine forests of the western U.S. We 
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•
ticipate that the primary use for expert systems of 
is type will be to identify areas where further 

research is required. 

tions about the function of the system, the "expert," 
and the nature of the knowledge base. These differ­
ences are summarized in Table I. 

Research Expert Systems: Expert 
Systems in a Research Context 

We altered traditional development methods and 
concepts associated with expert systems to facilitate 
working in a research environment. Our approach 
violates some commonly accepted criteria and as­
sumptions about the types of problems suitable for 
expert system development. As a result, we call our 
programming produ~ !1. "research expert system." 
The resean:h expert system borrows heavily from 
expert system methodology, but differs in assump-

Methods 

Our goal was to develop AI methods and concepts 
that facilitate communication among resean:hers by 
incorporating, into an expert system, knowledge that 
would otherwise not be available to the scientific 
community. Such a system could provide feedback 
to the system •s users (individual resean:hers, teams 
of researchers, and managers). Feedback would 
clarifJ.importantelements(e.g.,objectivestatement, 
informational flow, and model diagram)ofthe proc­
ess so users could better identify patterns, regulari-

Table 1. Differences in assumptiJJns and requirements Q.SS()Ciated with expert systems and research_ expert systems . 

•• . EXPERT SYSTEM• RESEARCH EXPERT SYSTEM' 

• 

Task or Function of the System 

Experts are viewed as problem solvers who 
solve problems more quickly than nonexpertS. 
A timely solution has high value. 

Researchers are much less concerned with solving spe­
cific problems but seek to increase knowledge of a topic. 
thereby eobancing future problem-solving capability. 
Ideally. the research expert system system will help distinguish 
known factors and relationships from those which are not 
yet fully understood. The time required to produce definitive 
results is unpredictable. 

Nature of Expertise -

The knowledge engineer packages the expertise A researcher seeks to expand knowledge of the domain. 
of acknowledged experts for use by nonexperts. The knowledge engineer captures and pacbg'eS· there­

searcher•s conceptual model to facilitate scientific <lia.lOiue 
and testing. 

Nature of the Knowledge Base 

The knowledge base is stable and need not be 
substantially modified for a long period. 

• Widman et al. (1989). 
b Bartos and Downing (1989). 

Knowledge evolves and reflects new findings. PrototypeS 
must rapidly reflect new findings and be fonnally evaluated. 
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ties, or inconsistencies within the designed system, 
and recognize opportunities for additional research. 

It seemed that feedback of several types would be 
useful at a number of stages during model develop­
ment and testing: 

Researchers' initial perceptions of the model 
When researchers are asked to com menton the accuracy of the 

model and the factors which it incorporaleS. 
When resean:hers from other disciplines provide additional 

information about the model. i i · 
When colleagues review the model 
When alternative models are incorporated or tested. 
When resean::hers and managers attempt to coordinate the 

collection of data. 

The Researchers and the Nature of Their 
Knowledge Domain 

brood survival. This process of identifying factors 
and relationships that might be associated with a 
particular objective (e.g., estimating overwintering 
brood survival) is illustrated in Figure la. 

We incorporated our main expert's suggestions 
and then had him review and modify the model. 
Figure l-B2 illustrates the completed diagram that 
he developed concerning overwintering brood sur­
vival. The diagram illustrates one stage of feedback 
that we used to elicit responses. This and similar 
models often required several iterations before the 
researeher thought it adequately represented his 
views. Providing an opportunity to review models 
let him correct discrepancies and omissions and -
9CC8sionally prompted him to restate the initial ob-

'jective. 
The diagrams that we provided forresearehers to 

Initial interviews, observation, and conceptual review helped them focus on endemic rather than 
diagramming.· We briefly described the purpose of epidemic populations, although the shift in emphasis 
the model to each of the five reseaxchers and pest did not always occur smoothly. Several researchers 
management specialists that were interviewed. As were initially reluctant to speculate about endemic 
noted abov:e, the model was being developed to population behavior. We often had to remind them 
better understand the dynamics of endemic popula- that the model concerned endemic populations. 
tions of mountain pine beetle in lodgepole pine In addition to the diagrams generated during the 
forests in the weStern United States. These experts~: interviews,weprovidedothertypesofgraphics(Fig. 
were then asked tb formulate a more specific objec- - 2) for researchers to review during the process of 

• 

• 
tive than that which we described. For example, we model development Fmally, we also spent a limited ·-~ . : 
said the model was being developed "to predict the time in the field with several of the investigators; this 
number of new lodgepole pine tree kills per stand allowed us to probe for additional infonnation-
next season" or <<to predict the change in mountain why they looked in certain locations or how certain 
pine beetle populati,on numbers per stand next sea- stand conditions might affect mountain pine beetle 
son." We asked the researchers to categorize the behavior, for example. 
nature of this change: for example, <•double or more," · 

"little or no change/' "significant decline," «beyond Predictions, Certainty Factors and 
ourunderstanding-unabletopredict." Researchers Qualifying Comments·-for Factor 
were then asked to specify the kinds of information Combinations 
(factors and subcategories) that they would need to 
make these predictions (Fig. la). 

Researchers were also asked to name the vari­
ables that they thought would be associated with 
particular factors. For example, we were told that 
winter and spring temperature patterns are required 
to estimate overwintering brood survival. We then 
asked researchers to identify other factors that would 
be associated with estimates of the overwintering 

AI Applications 

When a conceptual model had been diagrammed 
successfully (when the expert offers no additional 
changes), a printout (Fig. 3) of all combinations of 
factors and subcategories was generated using a 
program written for this purpose.2 Each expert was 

2 KAP (Knowledge Acquisition Program). Designed and 
programmed by Kent Downing, January 1990. 
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• A: Knowledge Acquisition Phases 

• 

Continue until PHASE 3: Elicit PHASE2: Elicit PHASE 1: Elicit 
model reflects B-level factors A-level factors from scientist 
scientists's and subcategories and subcategories the objective 
view of factors - required by f-oE- · reguir~d by f-oE- or prediction 
required to scientist to scientist to to be made 
complete the predict/explain predict/explain including 
model. C-. D-. A-level factors. phenomenon X. expected 
E-level factors. outcome 
etc. categories. 

-

I -

I 

B . Feedback to scientist . 

f FactorB1 t-- FactorA1 Possible states 
Subcategory 1 Subcategory 1 - of Phenomenon X .. . 

~ f-;1-Subcategory 2 Subcategory 2 - Outcome A or 
Subcategory 3 - Outcome B or 

- Outcome C or 
Factor A2 ••• f- - Outcome D or 

I 1-1 Factor B2 ••• ... etc. 

I ·Factor A3 ••• f-
~ . 

B 2: . AMMAN MODEL (part) 
~ 

Size of Infested Trees Brood Survival 
1. < 9 inches DBH -High 
2. 9 < 12 Inches DBH - -Moderate - OBJECTIVE: Predict ~ 

3. 12 Inches or More -Low New MPB tree Kills 
Next Season 

Establishment New Tree 
-Increase 

Tempera~$ 
Mortality 
Last Season f-;-- -No Change 

. 
-Decline ... . . .. 
- No Change to Decline 

Winter Temperatures - No Change· to Increase 
Temperature at ... -Unable to Predict·· 
Flight Time .__,.__ 

... 
Spring Temperatures 
... 

Stand 
Characteristics ~ 

Elevation of Stand ... 
... 

Figure 1. (A) Krwwledge acquisition phases including factors and subcategories, (B)feedback to experts including the 
structure of the acquired knowledge basHactors and subcategories, (B2) completed diagram developed by one 
expert concerning overwintering brood survival. 

. ' 

.. 
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Would we expect variation 
in endemic response due 
toN-S and/or E-W 
differences in location? 

PROBE: \ 
Would we expect 
variation in endemic 
response because.of 
differences in: 

• Aspect? 
. Slope Position? 
• Topographic 

variation? 
. Other? 

Figure 2. Graphics used to trigger the expert's thought processes. The three-dimenswnal graphs are of a study site on 

• 

the Medicine Bow National Forest in southeastern Wyoming. The map sJwws the distribution of lodgepole pine · • 
througJwut North America. 
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•~--------------
OBJECTIVE: To predict/explain falVwimer/spring brood survival. 

TOTAL RULES ENTERED: 108 RULE NUMBER: 4 
PREDICTION: low 
Estimated certainty value [0-10 with 0 = none.]: 10 

Case Conditions 

establishment_period_temperatures 
winter_temperatures 
spring_ temperatures 
elevation_of_stand .-

COMMENT 1: 

. :.. --f .. 

October average or higher 
one week minus 35 degrees F. 
No cold snap 
< 9 inches D~H · 

Beetles have.3 things going against them: winter temps. elevation. 
and size of infested trees. but minus 35 degrees F is by far most significant 

·------------~~~ .. , 
OBJECTIVE: To predict/explain falVwinter/spring brood survival. 

TOTAL RULES ENIERED: 108 RULE NUMBER: 5 
PREDICTION: low 
Estimated certainty value [0-1 0 with 0 = none.]: 8 

Case Conditions 

establishment_perlod_temperatures 
winter_temperatures 
spring_ temperatures 
elevation_ of_ stand 

COMMENT 1: 

. 
October average or higher 
one week minus 35 degrees F. 
No cold snap 
9 < 12 inches DBH 

Protection from - 35F by deep snow coupled with large tree diameters 
could result in fair beetle production, but would no more than maintain 
status quo . 

Predictions, 
certainty values. 
and comments 
entered here. 

• Figure 3. Example of the output produced from the knowledge acquisition program of all combinations of factors and 
subcategories. 
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then asked to evaluate all combinations of interac­
tions and to record his evaluations directly on the 
printout. A printout was developed for each expert's 
situation, and he was allowed a reasonable time 
period to complete the request. The experts were 
asked to enter three types of information for each 
combination: 

1) A prediction for the various case conditions as to what the 
brood survival wiD be the following year (lo'Y, medium, or 
high). ; "· 

2) A numerical value (I to 10 where O=none) that represents 
the researcher's subjective estimate of certainty in the 
prediction. 

3) Oneormorecommentsthatqualifyorodterwiseexplain the 
rationale for the prediction. Published reference citations 
and other sources that support or refute the prediction could 
be entered. 

This phase of the process may generate a consid­
erable number of combinations of factors and sub­
categories, each requiring input by the expen as to a 
prediction, certainty factor, and supporting informa­
tion. Each combination is a distinct case situation. In 
the example concerning the prediction of fall/winter 
brood survival, researchers could provide input on 
five factors, three of whi6h had three subcategqries 
and two of which had two subcategories. Thus, this 
portion of the model could involve a total of 108 
combinations-all possible combinations of factors 
and subcategories. 

The researcher was asked to predict the outcome 
of each combination of factors and subcategories. 
The result is to capture subtle interactions within 
each combination and to show how a change in one 
or more variables (e.g., winter temperature, eleva­
tion of stand, Fig. 3) would affectothervariables. By 
this process, interactions are reflected in the rules 
produced by the following rule-induction proce­
dures. 

Rule Induction and Generation of the 
Research Expert System 

The factor combinations and predictions were 
processed by a rule induction program. 3 The rules 
generated were a subset of the initial set of factor 

combinations. For example, 62rules were generated 
from the initial 108 factor combinations concerning 
brood survival when certainty factors (supplied by 
the experts) were included, and to 18 when they were 
excluded. Certainty factors are one way to store, 
generate, and reason with uncertain imprecise knowl­
edge (Rothman 1989). 

This version of the model that included logical 
rules with associated predictions was presented in 
three alternative formats for the researchers to exam­
ine for errors and inconsistencies. Formats included 
1) printouts of decision trees (Fig. 4), 2) printed lists 
of rules (Fig. 5), and 3) screen displays during and at 
the end of run-time program consultations (Fig. 6). 

·Data, Predictions, and Verification · 

Field data are processed through the resean;h 
expert system to generate expected QUtoomes or 
predictions. An example would be: 

Stand identification code? = fi:a:-Jpl()..()23245 
Wbat is the Mean Diameter of the Stand?= <8" 
WhatwasthePattemofWintrrTempemJmelastSeason? =One 

weet or more of minus 35"P 
Prediction of new lodgepole pine tree kills next season is 

· DECLINE compared with last season. 

This makes it possible to compare results gener­
ated with the model with actual events observed 
under field conditions, a key step in model valida­
tion. 

Results and Discussion 

The process of model development clarified:areas 
of disagreement among researeheri about the priori­
ties and objectives of investigation, the nature of 
factors and subcategories required for prediction, the 
hypothesized relationships, predicted outcomes, and 
levels of certainty. These differences surfaced when 
each expert reviewed the model he had formulated 
and when each researcher examined the diagrams 

3 KnowledgeMaker, KnowledgeGarden, Nassau, New York 
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•~--------------
OBJECTIVE: To predict/explain fall!wimer/spring brood survival. 

TOTAL RULES ENTERED: 108 RULE NUMBER: 4 

Estimated certainty value [0-10 with 0 =none.]: 10 
PREDICTION: low ~ 

Case Conditions 

establishment_period_temperatures 
winter_temperatures 
spring_ temperatures 
elevation_of_stand ¥ ~· 

COMMENT 1: 

. ' 
' 

October average or higher 
one week minus 35 degrees F. 
No cold snap 
< 9 inches DB,H · 

Beetles have 3 things going against them: winter temps, elevation, 
and size of infested trees. but minus 35 degrees F is by far most significant 

·--------------~~ .. 
OBJECTIVE: To predict/explain falVwinter/spring brood survival. 

TOTAL RUlES ENTERED: 108 RULE NUMBER: 5 
PREDICTION: low 
Estimated certainty value [0-10 with 0 =none.]: 8 

Case Conditions 

establishment_perlod_temperatures 
winter_temperatures 
spring_ temperatures 
elevation_ of_ stand 

COMMENT 1: 

. 
October average or higher 
one week minus 35 degrees F. 
No cold snap 
9 < 12 inches DBH 

Protection from - 35F by deep snow coupled with large tree diameters 
could result in fair beetle production. but would no more than maintain 
status quo . 

.-----.. 
Predictions • 
certainty values, 
and comments 
entered here. 

• Figure 3. Example of the output produced from the knowledge acquisition program of all combinations of factors and 
· subcategories. 
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then asked to evaluate all combinations of interac­
tions and to record his evaluations directly on the 
printout. A printout was developed for each expert's 
situation, and he was allowed a reasonable time 
period to complete the request. The experts were 
asked to enter three types of information for each 
combination: 

1) A prediction for the various case conditions as to what the 
brood survival will be the following year {low, medium, or 
high). i ; .· 

2) A nwnerical value (1 to 10 where O=none) that represents 
the resean:hec•s subjective estimate of certainty in the 
prediction. 

3) Oneormorecommentsthatqualifyorotberwiseexplainthe 
nllionale for the prediction. Published reference citations 
and othec sourees that support or refute the prediction oould 
be entered. 

This phase of the process may generate a consid­
erable number of combinations of factors and sub­
categories, each requiring input by the expert as to a 
prediction, certainty factor, and supporting informa­
tion. Each combination is a distinct case situation. In 
the example concerning the prediction of faiVwinter 
brood survival. researchers could provide input on 
five factors, three of whith had three subcategQries 
and two of which had two subcategories. Thus, this 
portion of the model could involve a total of 108 
combinations-all possible combinations of factors 
and subcategories. 

The researcher was asked to predict the outcome 
of each combination of factors and subcategories. 
The result is to capture subtle interactions within 
each combination and to show how a change in one· 
or more variables (e.g., winter temperature, eleva­
tion of stand, Fig. 3) wouldaffectothervariables. By 
this process, interactions are reflected in the rules 
produced by the following rule-induction proce­
dures. 

Rule Induction and Generation of the 
Research Expert System 

The factor combinations and predictions were 
processed by a rule induction program. 3 The rules 
generated were a subset of the initial set of factor 

combinations. For example, 62 rules were generated 
from the initia1108 factor combinations concerning 
brood survival when certainty factors (supplied by 
the experts) were included, and to 18 when they were 
excluded. Certainty factors are one way to store, 
generate, and reason with uncertain imprecise knowl­
edge (Rothman 1989). 

This version of the model that included logical 
rules with associated predictions was presented in 
three alternative formats for the researchers to exam­
ine for errors and inconsistencies. Formats included 
1) printouts of decision trees (Fig. 4), 2) printed lists 
of rules (Fig. 5), and 3) screen displays during and at 
the end of run-time program consultations (Fig. 6). 

·Data, Predictions, and Verification · 

Field data are processed through the research 
expert system to generate expected qutcrimes or 
predictions. An example would be: 

Stand identification code? = fra-Jpl0-023245 
Wbat is the Mean Diameter of the Stand?= <8" 
WbatwasthePauemofWinterTemperaturelastSeason?=One 

wea or more of minus 3S"F 
Prediction of new lodgepole pine tree Jdlls next season is 

· DECLINE compared with last season. 

This makes it possible to compare results gener­
ated with the model with actual events observed 
under field conditions, a key step in model valida­
tion. 

Results and Discussion 

The process of model development clarified"aTeas 
of disagreement among researcherS about the priori­
ties and objectives of investigation, the nature of 
factors and subcategories required for prediction, the 
hypothesized relationships, predicted outcomes, and 
levels of certainty. These differences surfaced when 
each expert reviewed the model he had formulated 
and when each researcher examined the diagrams 

3 KnowledgeMakec, KnowledgeGarden, Nassau, New York. 
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II Classification tree for BROOD SURVIVAL~~ 
What is <he value for wimer_temperatures? 

one week minus 35 degrees F ::Prediction= low BROOD SURVIVAL 
no week of minus 35 degrees F 

What is the value for size_of_infested_trees? 
< 9 inches DBH ::Prediction= low BROOD SURVIVAL 
9 < 12 inches DBH 

What is the value for establishment_period_remperatures? 
October much below :: Prediction= low BROOD SURVIVAL 
October slightly less 

What is the value forelevation_of_stand? 
lower third :: Prediction= moderate BROOD SURVIVAL 
middle third :: Prediction= low BROOD SURVIVAL 
upper third :: Prediction= low BROOD SURVIVAL 

October average or higher 
What is the value for elevation_of_su.nd? 

lower third :: Prediction= lllOderate BROOD SURVIVAL 

Figure 4. Example printout of a duision tree prOt:blud byKnowledgeMaker. 

• 
' 

I Rule Induction for BROOD SURVIV Aijj' 
Rule 1 
If winter_ temperatureS is one week minus 35 degxees·F 
then BROOD_SURVIV AL is low. 

Rule2 
If winter_temperatureS is no week of minus 35 degxees F 
and mean_d.iameter_infested_ttees is< 9 inches DBH 
then BROOD_SURYJVALis low • 

Rule3 . . 
If winter_temperatu.res is no week of minus 35 degxees F 
and mean_diarneter_infested_IRles is 9 < 12 inches DBH 
and establishment_period_tcrnpera.tuKS is October much below 
then BROOD_SURVIVAL is low. 

Rule4 
If winter_remperatu.res is no week of minus 35 degxees F 
and mean_diameter_infested_trees is 9 < 12 inches DBH 
and establishment_period_tcrnpera.tuKS is October slightly less 
and elevation_ of_stand is lower third 
then BROOD_SURVIV AL is moderate. 

Figure 5. Example printout of a list of rules produced by Knowledgdlaker. 

RESULTS OF ANALYSIS Stand Identification Code: fccr-lpl2-043551 
DATE: 6 19 1990 TIME: 14 55 23 

mean_stand_diameter, 
= STAND_STRUCfURE 

winter_remperatures, 
mean_diameter_infested_trees, 
establishment_period_temperatures, 
elevation_of_stand 

= BROOD_SURVIV AL 
new _tree_mortality _last_season, 

PREDICTED NEW TREE KILLS 
COMPARED WITH LAST SEASON 

8 inches DBH or more 
SUPPORTS BUILDUP 
no week: of minus 35 degrees F 
12 inches DBH or more 
October temperatures average or higher 
within LOWER 1HIRD of elevation range 
HIGH 
one clump of 4-7 trees in stand 

INCREASE . 

Figure 6. Example screen display at the concluswn of a run-time program consultation. 
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and programs that represented perspectives of his 
colleagues. 

The detail required for models varied with the 
purpose of the modeL Management-oriented mod­
els emphasized changes in long-term factors; scien­
tific models were more likely to include fundamental 
short-term and long-term properties. These differ­
ences must be resolved when field data are collected 
for model validation. We are now attempting to 
determine if the research expert system models will 
help users understand why it is necesSary to collect 
certain types of new information. 

Providing feedback in different formats (e.g., 
diagrams, predictions, research expert system proto-

, types, and expl~atory information) facilitated iden­
tification of conCeptual problems. The model can be 
modified accordingly. Feedback was important at 
all stages of the process. 

Simplifying and automating the model-building 
process facilitated interaction between knowledge 
·engineers and experts. Initial diagramming, an itera­
tive Process and joint effort, required approximately 
one to two days. The researcher required several 
more days to enter predictions, certainty factors, and 
.qualifying comments. Itoftenrequirednomore than 
two to four hours to create the first operational 
research expert system. Adding explanations of the 
outcomes often entailed several additional days of 
collaboration between a researcher and the knowl­
edge engineers. The need to modify or refme infor­
mation was occasionally apparent at any stage of the 
process. 

Including _knowledge from several experts al­
lowed us to integrate diverse but complementary 
perspectives into one model. It was not necessary, 
however, to achieve consensus, but rather to formu­
late competing models for field testing. 

Research expert system development facilitated 
and focused interdisciplinary communication. Indi­
vidual researchers often suggested that we obtain 
advice of specialists in other fields. For example, 
one entomologist proposed asking silviculturists to 
refine the representation of a critical silvicultural 
factor. 

Several researchers thought that research expert • 
system development may facilitate efforts by re­
searchers and managers to integrate data collection. 
In addition, developing clear I y defined and compre-
hensible models gives credibility to requests for 
collecting specific kinds of data. 

Knowledge acquisition is a complex and time­
consuming process. Several experts expressed the 
view that their ideas could not easily be captured via 
this process. Some were reluctant to ~'give away" the 
valuable knowledge acquired through years of work 
and observation to a research expert system unless 
their contributions were appropriately acknowledged. 

Evaluating the Contributions of AI to 
· Forest Science 

We sought to improve our ability to develop, 
implement, evaluate, and modify expert systems in 
forest science. Our methods addressed the inability 
of experts to describe their own reasoning proeesses 
(Shapiro 1987). Our investigation attempted to 
capture and organize the incomplete and ill~efined • 
mental models of''reality'' that researchers develop. 
models that have not yet been suitably refined for 
systematic scientific examination. 

Researchers frequently made important modifi­
cations to facts and relationships when they re- ··~ · · 
viewed models. We developed a general procedure 
to rapidly revise (re-prototype) models to reflect 
changes made by them. 

We did not attempt to compare the efficacy of AI 
methods to other methods that researchers use to 
conceptualize and clarify information. Perhaps the 
outcome would have l>eyn similar had thesy .AI­
based procedures not bein einployed. We cannot yet 
unequivocally state that our methods enable re­
search to progress more efficiently. Additional 
research is required to determine the benefits of AI 
methods in forest science and the conditions under 
which these benefits can be realized. 

"For centuries, the physical sciences have improved our 
understanding of the natural world through observation and • 
experimentation. . .. there is no compelling reason to believe 
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•
that the same methods will not work [with AI] as well" 
(Buchanan 1988, page 209). 
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