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The dynamic interaction between mountain pine beetles (MPB) and hosts (generally 
lodgepole pine) is reviewed briefly. In particular, successful "switching" from initial foci of 
attack to nearby hosts which may be higher-quality resources is a potentially critical element 
initiating the transition from endemic to epidemic population levels. A coupled partial 
differential equation model for MPB dispersal and host response is reviewed. The equations 
are decoupled making an adiabatic assumption for MPB chemotaxis, and a "local" projection 
is made using the leading eigenfunction for the MPB density equation. This projection yields 
a system of ordinary differential equations for the spatia-temporal responses at individual 
trees. These equations are analysed to determine what factors control successful "switching" 
in a two-tree model. The results suggest that stand thinning ameliorates outbreaks mainly 
through interference with the chemical ecology via a change in micro-climate, rather than by 
altering host vigor. 

1. Introduction 
Mathematical reasoning has played a central role 
in ecological theory and application for at least 
the past 70 years [dating from the independent 
rediscovery of Verhulst's (1845) work by Pearl & 
Reed in 1920]. From the very beginning of these 
applications, there has been an appreciation for 
the role that spatial dynamics play in ecological 
issues [see Holmes et al. (1994); Turchin (1989)]. 
Irrespective of these attempts to include spatial 
considerations in ecological models, the prepon­
derance of mathematical modeling applications 
have involved analysis of spatially independent, 
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ordinary differential (difference) equation (ODE) 
models. This results not from the lack of 
perceived importance of spatial effects, but from 
the conceptual and procedural difficulty in 
dealing with partial differential (difference) 
equations (PDE), particularly in describing 
complex ecological interactions. The increased 
computational power offered by modern com­
puters has resulted in a resurgence of interest and 
research on spatial dynamics in ecological 
phenomena. Indeed, the inclusion of spatial 
dynamics in meaningful ecological models has 
been termed the "last frontier" in ecological 
theory (Kareiva, 1994). 

Spatial dynamics typically play a central role 
in the community dynamics of highly mobile 
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insects (Turchin & Thoeny, 1993). For example, 
dispersal is one of the most important, yet least 
understood, factors of bark beetle population 
biology (Anon., 1989). Current research with 
mountain pine beetle (MPB, Dendroctonus 
ponderosae, Hopkins), indicates that spatial 
dynamics play a crucial role (Preisler & 
Haiganoush, 1993; Mitchell & Preisler, 1991; 
Safranyik et a!., 1992). MPB has long been 
considered a major pest in western forests. As an 
aggressive bark beetle (one that kills its host), 
eruptions of this species are impressive events. 
Outbreaks can be both intensive (up to 80% or 
greater mortality) and extensive (covering thou­
sands of contiguous acres), resulting in serious 
economic consequences. It is also becoming 
recognized that disturbances, such as insect 
outbreaks, may be central to maintaining the 
structure, function, and health of western forests 
(Schowalter et a!., 1981; Romme et a/., 1986; 
Mattson & Addy, 1975; Roe & Amman, 1970). 

Interpretation of MPB in this dual role as a 
serious economic competitor and as a coevo1ved 
component of the ecosystem presents an 
interesting challenge. One important method to 
help address this challenge is development and 
analysis of quantitative models. Because of the 
ecological importance of MPB/host interactions, 
a wealth of spatially independent models have 
been developed (Berryman, 1976, 1982; Berry­
man eta!., 1984, 1989; Raffa & Berryman, 1983, 
1986; Burnell, 1977; Safranyik et a/., 1989; 
Polymenopoulos & Long, 1990). None of these 
models have been spatially explicit, although one 
(Raffa & Berryman, 1986) has been spatially 
extensive, in the sense of simulating many hosts 
without specific spatial locations. The qualitative 
dynamics of almost all of these models have 
included the effects of a metastable point, 
corresponding to the need for critical MPB 
population levels to successfully attack hosts. At 
either the level of individual hosts or integrated 
biomass, these models have achieved some 
success. However, for many bark beetle species, 
including MPB, dispersal is only one part of the 
sequence of events necessary for successful 
population establishment and expansion. 
Aggregation on and dispersal from a host are 
of such overriding importance to MPB ecology 
that including spatial dynamics in model 

representations is essential for ecological credi­
bility. MPB aggregation on a new host is 
accomplished through a series of synergistic 
semio-chemical reactions between insect and 
host. These reactions result in a rapid mass 
attack of individuals on a host. It has been 
hypothesized that attacks which have been 
focused on a single tree may switch to nearby 
trees as the original focus tree becomes fully 
colonized (Geiszler eta!., 1980), thereby causing 
nonlinear dispersal away from a colonized host, 
with a greater attack rate on those trees which 
are switched to. This behavior may enable 
successful attack of more vigorous hosts which 
the beetles would be unable to overcome 
otherwise. 

We have built on past models to develop a 
large-scale {e.g. forest-sized) reaction-diffusion 
PDE model of the spatial interaction between the 
MPB and its host trees, including critical 
components of this species' chemical ecology 
(Powell eta!., 1996; Powell & Rose, 1997; White 
& Powell, 1997). The mathematical construction 
of this model is reviewed below. We refer to the 
explicit, spatially dynamic model as the global 
model because it attempts to capture the full 
spatial extent of MPB pheromone ecology. From 
this modelling endeavor, we have observed that 
even starting with a completely homogenous 
environment, the positive and negative feedback 
generated by attacking beetles soon results in a 
rich, spatially dependent chemical landscape that 
tends to modify future events. 

As discussed in Powell eta!. (1996), the global 
model has proven to be too complicated for easy 
ecological use. While progress has been made on 
integration of spatio-temporally stiff PDE 
(White & Powell, 1997), the PDE remains 
unsuited to experimentation and correlation with 
real data. A local projection was achieved, using 
a Gaussian ansatz for the dependent variables 
(Powell eta/., 1996; Powell & Rose, 1997). This 
model facilitated parametrization and exper­
imentation, but the Gaussian assumption for the 
MPB density function was unable to sufficiently 
resolve the switching behavior of MPB changing 
the locus of their attack from a primary focus 
tree to secondary trees. Our goal in this paper is 
to analyse a local projection of the global model 
which captures both aggregation and dispersal in 
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a single system of ODE, particularly with 
reference to the switching behavior of attacking 
beetles. 

2. Derivation of the Model Equations 

2.1. BEHAVIOR OF THE PINE BEETLE/HOST TREE 

SYSTEM 

Because of its economic impact, MPB 
population dynamics has been the subject of 
sustained research efforts dating from the early 
1900s, focused primarily on protection of 
valuable forest resources. Although this insect 
spends most of its life cycle under the bark 
feeding on phloem tissue, the relatively short 
phase of the life cycle in which emergence and 
attack of new hosts occurs is essential for 
continuing the population. It is during this time 
that complex spatial dynamics come into play. 

The MPB is typically a univoltine species 
which attacks living pines. Unlike most phy­
tophagous insects, successful reproduction is 
contingent upon death of all or part of the host 
(Wood, 1972). Host trees, however, have evolved 
effective response mechanisms to defend them­
selves against bark beetle attacks (Smith, 19,63; 
Reid et al., 1967; Nebeker et al., 1993; Raffa et 
al., 1993). Almost all trees are capable of 
responding to bark beetle attacks, but only those 
with a rapid and sustained reaction are likely to 
survive (Berryman et a/., 1989; Raffa et al., 
1993). If many beetles attack the same tree over 
a short period of time (i.e. mass attack), they can 
exhaust the tree's defensive mechanisms. The 
final outcome of a bark beetle dispersal and 
colonization attempt is, therefore, binary, but 
dependent upon a complicated series of compet­
ing rate reactions which regulate both beetle 
arrival and host response (Raffa & Berryman, 
1979). 

The evolved relationship between the MPB 
and its host trees has resulted in an elaborate 
chemical communication system. Through a 
chemically-mediated synergistic reaction with 
host defensive compounds, female beetles attack­
ing a tree release trans-verbenol, which, when 
mixed with a-pinene, is an aggregation phero­
mone attracting both sexes (Pitman, 1971; 
Pitman et a/., 1968; Hughes, 1973). At higher 

concentrations of trans-verbenol, higher pro­
portions of males are attracted (Renwick & Vite, 
1970). Attacking males produce exo-brevicomin 
which at low concentrations primarily attracts 
females (Conn et a/., 1983). This system of 
chemical communication results in mass attack 
on a single focus tree. However, the tree is a finite 
food resource that can be over-exploited by too 
many beetles, and it is therefore to the advantage 
of individuals to redirect their attacks after the 
target host has exhausted its defensive response. 
A complex suite of derived compounds have 
evolved (e.g. verbenone, frontalin, exo-brevi­
comin) resulting in a close-range redirection of 
responding beetles to nearby trees (Borden et al., 
1987; McCambridge, 1967; Geiszler et al., 1980; 
Bentz et al., 1996). This switching behavior 
therefore gives each beetle an improved chance 
to successfully attack hosts and simultaneously 
avoid placing its offspring in direct competition 
for resources. It may also serve to allow MPB to 
attack more vigorous hosts which represent 
higher quality food resources. 

At low population densities, attacking MPB 
selectively attack trees weakened by disease or 
other stresses (Tkacz & Schmitz, 1986; Schmitz, 
1988; Schowalter & Filip, 1993). It is hypoth­
esized that stressed trees release a kairomone 
signal which attracts MPB flying in the vicinity, 
providing primary attraction to a particular tree 
(Gara et al., 1984; Moeck & Simmons, 1991). An 
alternative hypothesis is that new hosts are found 
using a combination of random landings guided 
by visual cues (Schonherr, 1976; Sheppard, 1966) 
followed by chemical and tactile cues once on the 
host tree (Hynum & Berryman, 1980; Raffa & 
Berryman, 1979). Most likely, both situations 
occur. Although the combination of factors that 
signal a weakened tree remains an open question, 
enough evidence exists for the effect of host 
compounds on beetle behavior (Norris & Baker, 
1967; Raffa & Berryman, 1982; Raffa, 1988) that 
models of MPB spatial dynamics should include 
some representation of host volatiles, as well as 
beetle-produced pheromones. 

Over the past few years our team has 
developed a partial differential equation (PDE) 
model for seasonal MPB dispersal, including a 
representation of the pheromonefkairomone 
ecology and explicit locations for hosts (Powell 
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et al., 1996; White & Powell, 1997a, b; Powell & 
Rose, 1997; Logan et al., 1997; Biesinger, 1998; 
Powell et al., 1997). The model is intended to be 
applicable during the 3-4 weeks in late summer 
during which MPB emerge from dead hosts and 
disperse to attack healthy, uninfested hosts. The 
complex chemical cues in the MPB/pine tree 
interaction act as self-focusing and self-dissipat­
ing forces. These forces create a nonlinear, 
density dependent response that results in 
complex spatial patterns of resource utilization. 
In the next section we will review the 
construction of the (global) POE model (see 
Table 1 for parameters). 

2.2. THE GLOBAL MODEL 

We define the following dependent variables, 
which vary with spatial location, x, y, and time, 
t: 

P(x, y, t)-population of MPB dispersing 
from previous year's infested trees 

Q(x, y, !)-population of MPB attacking 
susceptible trees 

A(x, y, f)-concentration of pheromones 
S(x, y, t)-resin outflow 
R(x, y, t)-resin capacity of initially unin­

fested trees 
H(x, y, t)-number of entrance holes bored 

by attacking MPB. 

If we neglect spatial redistribution, the number 
of flying MPB decreases proportionally to the 
death rate, rot P and the number of beetles who 
land and attempt to colonize a tree, rt(R/Ro)P. 
The term r1 P captures the rate at which MPB 
land to attack hosts. Ro is the rest resin capacity 
of the tree, proportional to the surface area of 
the bole. Consequently the fraction Rj Ro 
measures the uninfested portion of the bole. This 
gives a dynamic equation for changes in flying 
MPB density: 

The term y captures the emergence rate of flying 
MPB. To avoid confusion at this point, we stress 
that this model is to be an "in-season" model of 
dispersal. Thus, next year's rate of emergence (y 
will depend on the success of this year's attacking 
population, Q). During the time period for 
which the model is valid, y is spatio-temporal 
data representing brood-production in pre­
viously infested trees, while R accounts for the 
defensive capacity of susceptible trees during the 
dispersal season. 

The nesting population, Q, grows proportion­
ally to r1P. Nesting MPB die at some rate, ro2Q. 
Finally, beetles may be killed by the natural 
defense mechanisms of the host, resin out-flow. 
The population of nesting MPB should decrease 

TABLE 1 
The list of parameters appearing in the global PDE model for MPB redistribution. Density units are 
represented with respect to hectares (hec ), amounts of pheromone with respect to micrograms 
(pg = I0-6 g), and numbers of MPB are counted in hundreds (HMPB). The basic time unit is the flight 

Parameter 

hour (fhr ), of which there are approximately jive per day 

Definition 

Critical concentration at which pheromones become repulsive 
Saturation parameter for pheromones 
Rate of pheromone production by nesting beetles 
Rate of pheromone diffusion 
Mortality rate of beetles due to resin outflow 
Loss rate of pheromone 
Diffusivity of flying beetles due to random movement 
Strength of directed MPB motion due to pheromone gradients 
Rest resin capacity of healthy (susceptible) trees 
Rate of landing and conversion from flying to nesting beetles 
Rate of resin replenishment 
Rate of resin outflow through holes bored by beetles 
Rate of resin crystallization (tree recovery) 
Density of MPB emergence from previously infested trees 

Units 

f.lg fhr- 1 HMPB- 1 

hec fhr- 1 
Rill 

fhr-1 
bee fhr- 1 

heel pg- 1 fhr- 1 

Ro 
fhr- 1 

hec-fhr- 1 

hec-fhr- 1 

hec-R;) 1 

HMPB-hec- 1-fhr-' 
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in proportion to the resin out-flow through 
occupied burrows, p,s~. This gives an equation 
for Q, 

. R Q 
Q = -w2Q + r,~ P- p,s H. (1) 

The rate of increase in the number of holes 
drilled is precisely equal to the number of MPB 
who have attempted to nest. On the other hand, 
resin crystallizes after flowing through burrows, 
slowly closing the hole. This means that the holes 
should be lost at a rate proportional to the 
amount of resin out-flow, S, which itself is 
proportional to the number of holes and the 
available resin capacity, 

S r3HR. 

A rate equation for H is given by 

. R 
H = r'Ro P r4r3HR. (2) 

It remains to be determined how the local resin 
capacity and the amount of resin outflow vary 
with time. Let R0 be the reservoir capacity an 
uninfested tree maintains naturally. When R -+ 0 
the tree has no capacity to replenish its reservoir, 
so that the rate of change of the resin capacity 
should be proportional to R(R - Ro). Resin 
capacity is depleted proportionally to the 
number of entrance holes and the available 
amount of resin which can flow out through the 
holes. These two processes give 

R [r2(Ro R) rJH]R. (3) 

This model for an uninfested tree's defensive 
response is essentially that proposed by Berry­
man et a/. (1989), with the difference in 
interpretation that the R used here describes the 
total resin capacity, whereas the Berryman 
defensive variable is the resin available to flood 
a single nest gallery. One advantage of this 
interpretation is that our resin capacity is 
proportional, in part, to the surface area of the 
host bole, which is convenient for analysing rate 
of attack and the effect of resin exudation on 
nesting MPB. Otherwise, the host-MPB model 
above differs from Berryman et al. by including 
host recovery (via the variable H) and an explicit 
mechanism for relating the number of attacks on 
a host to MPB population densities. 

The above equations reflect the temporal 
behavior without spatial redistribution. One 
mechanism for understanding spatial redistribu­
tion is to consider mass balances in some 
arbitrary spatial domain, .Q (Keller & Segel, 
1971; Murray, 1989; Holmes et a!., 1994). The 
total number of beetles in that domain is 

N flPdxdy, 
and can change only due to movement of beetles 
across the boundary of .Q (flux) or loss/emer­
gence of beetles within .Q (sinks/sources). This 
gives a simple law, 

Jt N = Flux into .Q Flux out of .Q 

+Source Terms- Sink Terms. 

The source and sink terms are described above. 
For brevity we will denote these terms as f(P, A, x, y, t) so that 

Source Terms- Sink Terms fifdx dy. 

The flux terms will quantify how the population 
of flying MPB disperse. 

Denote the flux vector by </>. There are two 
basic components to the flux function, reflecting 
the beetles' recognition of potential hosts, their 
response to pheromones, and the degree of 
randomness in their behavior. This allows for an 
interplay between random and non-random 
movement, as in Morris & Kareiva (1991). Thus, 

where 

• cj)A is flux due to the beetles' attraction 
to/repulsion from the suite of pheromones, 
A. The summed response of these phero­
mones is attractive in small concentrations, 
repulsive in larger concentrations, giving 
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TABLE 2 
Parametric values for numerical simulation and units. Units 
involving resin are measured relative to ~- Other units are: p.g 
oo-6 grams), hec (104 square meters= hectares), fhr (flight 
hours.- 5 fhr day- 1

). Parameter values are based on observational 
and anecdotal data discussed in Biesinger (1998) 

Parameter Value 

IX I 
a, 2/lgfhr-• HMPB-• 
p 0.43 .Ro 1 

II lllFc fhr-• 
Ro 1 Ro , 0.0045 hec-fhr-• 
r4 0.0045 hec-.Ro' 

In fact, since one may interpret this term 
multiplying P as a peak velocity of MPB 
movement in response to the presence of a 
pheromone gradient, we choose rx = 1. This 
makes the peak velocity of MPB movement 
chemically independent, which is clearly 
sensible. 

• cj)p is flux due to the beetles' random 
redistribution in the absence of other 
influences, dependent only on spatial 
changes in the density of flying beetles, 
which gives 

Now we return to the balance law. The total 
flux into n with be the integral of the flux vectors 
around the boundary of the domain. This gives 
the expression 

: 1N= fincj}·nds+ fifdxdy 

= fi[F- V·cj)] dx dy. 

Here n is the unit vector to the boundary of n, 
an and we have used the divergence theorem for 
the latter equality. Writing this expression in 
terms of only one integration, 

Parameter Value 

Ao 7.8 11g hec- 1 

b, 0.324 hec fhr-• 
.>, 360 fhr-• 
v 5.7 hec211g-• fhr-• ,, 0.16 fhr-• ,, 0.0023 hec-fhr- 1 

1' 0.1 HMPB hec-1 fhr-• 

Since n is completely arbitrary, the integrand 
must be zero, giving a spatio-temporal evolution 
equation for P, 

a at P = - V·{[vVf(A)]P-p.VP} 

where 

f(A) = etAo{(et + l)ln[ 1 + Ct~o]- ~0}. 
This equation and its derivation are similar to 
equations for environmentally-induced move­
ment in Shigesada et al. (1979), Shigesada 
(1980), Okubo (1987) and Brew (1987). 

We assume that the chemical concentration, 
A, obeys standard diffusion laws, but with 
sources and sinks of its own. For the suite of 
pheromones released by nesting beetles, sources 
are proportional to Q, while losses occur mainly 
due to advection through the canopy. These 
effects give a linear diffusion equation for A, 

:
1

A = b1V2A + a1Q- b1A. (5) 

Equations (1}-(5) are a complete spatio-tem­
poral description of the dependent variables 
controlling the behavior of MPB/pine relation­
ship during the 3-4 weeks during which MPB 
leave infested trees and attack uninfested trees. 
Approximate parameter values, based on obser­
vational and anecdotal evidence and discussed in 
Biesinger (1998) and Powell et al. (1997), are 
presented in Table 2. 
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3. .Construction and Meaning of the 
Local Model 

While the above-described "global" or 
spatially-extended PDE model for MPB disper­
sal and attack is descriptive in broad terms, it 
presents many problems from a scientific 
perspective. First and foremost among these is 
that it does not represent an easily falsifiable 
hypothesis-that is, it is extremely difficult to 
compare the PDE model with observations or 
measurements and determine whether or not it is 
a reasonable description of natural events. 
Density of dispersing MPB are very hard to 
observe directly. For the MPB/pine system, the 
most natural observable is number and timing of 
MPB attacks at an individual host. Even the 
units of these observations (numbers of MPB, or 
numbers of MPB per flight hour) are not 
consistent with the PDE description, which deals 
strictly in densities (that is, MPB/hectare or 
something similar). In this sense the global 
model is probabilistic, like the Schrodinger 
equation of quantum physics. What is needed is 
a way to "collapse" the probability functions 
whose evolution is described by eqns (1)-(5) into 
actual observables at the individual tree level. 
This is the goal of our "local" model-to 
develop a system of ordinary differential 
equations (ODE) which represents the conse­
quences of the PDE description at a single host 
pine. 

3.1. LOCALIZATION OF THE PDE 

Some of the state variables in eqns (1)-(5) are 
not hard to localize-the density of nesting MPB 
(Q), resin capacity (R), and number of open 
attack holes (H) all have direct interpretation on 
an individual-host level. For these quantities we 
define local state variables: 

q-number of nesting MPB in this tree 
r-resin capacity of this tree 
h-number of open attack holes in this tree. 

We will use the convention that upper case state 
variables represent densities, while lower case 
state variables represent numbers at a particular 
host. The variables which evolve dynamically in 
space, A and P present more of a challenge. We 
make the ansatz that each nesting beetle makes 
a specific chemical signature based on its rate of 
pheromone production and the steady-state 
response of the chemical field. Thus, an 
individual tree creates a plume in proportion to 
the number of nesting MPB, 

As discussed in Powell et al. (1996) and Powell 
& Rose (1997) this can be viewed as a "fitted" 
version of the actual chemical profile to a 
Gaussian, with I representing the distance from 
the tree of interest and w the characteristic size 
(area) of the tree. In general, w is small enough 
that ()t w may be neglected, which we will do 
below. 

The remaining details for localizing the global 
PDE model are to represent the population of 
dispersing MPB, and to connect this population 
density with the actual number of attacks at the 
tree of interest. The closest thing to a steady-state 
solution for P is an approximate solution 
assuming that A is temporally constant and the 
background emergence, y is located far enough 
away from the tree of interest to make an impact 
only in a diffuse sense, as though it were a spatial 
constant. The details of finding this solution are 
presented in Powell & Rose (1997). Under these 
circumstances, an approximate solution is 

P::::::: + exp ['!!.. f(A)J. 
r1 Wt J.l. 

Since we are viewing A as the chemical footprint 
of an individual host, P becomes a function of 
only q, I and y, 

[ { [ 

a,q [ Po~]~ ]J)exp - 4b 

~ aAo (a+ l)ln 1 + 
1 

aAo 
1 

P(q, I)~ _+Y exp 
r, w, 
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This equation now represents the local popu­
lation density of dispersing MPB only in terms 
of conditions at an individual host and distance. 

In the global model, flying beetles are drawn 
to a tree via their complex pheromone communi­
cation system (as described earlier). In the local 
model we assume this process has occurred and 
beetles are now influenced only by conditions at 
an individual host. At this point visual cues play 
an increasingly important role. To represent the 
number of attacks at an individual tree in terms 
of the reduced population density, we integrate 
P over an area surrounding the tree, correspond­
ing to the distance at which MPB are able to 
visually identify an individual host. If p is this 
visual distance, or the "radius of engagement," 
then the number of attacks at an individual host 
could be written 

I ex: rt [It f P(q, 1)1 d/ dO. 

Unfortunately, the actual integration indicated 
above is difficult, and numerical evaluation 
would render analysis difficult. Instead we 
choose to approximate the integral with its value 
at the tree multiplied by the area of integration, 

l(q) ~ r1np2P(q, I= 0). 

3.2. THE TWO-TREE MODEL 

The pheromone plume controls the behavior 
of beetles attacking a host. As this plume 
becomes large, it will overlap with other trees, 
altering the attack characteristics at a neighbor­
ing tree. This overlap of pheromone levels can be 
modeled by linearly superposing the pheromone 
levels of the trees, resulting in a summed 
pheromone level for all of the trees in the domain 
of interest. Because the equations are local, each 
tree inherits its own set of local equations, 
coupled via pheromones. The spatial and 
temporal pheromone levels of two trees, labelled 
x and y, are represented by Ax, Ar, while the 
coupled pheromone level is denoted by A10ra1: 

A rota/ = Ax + Ay. (6) 

In order to transform the global PDE model 
to a simpler local model, tree-centered state 
variables are assumed to have the form of a 

Gaussian. This will not give a completely 
accurate spatial representation, but will allow for 
the general behavior to be deduced. The global 
variables in Gaussian space are represented by: 

A, = 2a,(t) e-lfJw.,(r) 
Wa;(l) 

Q. = 2q,(t) e-lffw 
I w 

R 2r,(t) -lhw ·=--e' 
I w 

R 
2ro;(t) _12tw 

o,=-w-e 1
' 

The lower case variables represent the total 
quantity associated with a particular host. The 
variable /, is the distance between the point in 
question and the i-th tree, w., represents the 
(time-dependent) area of the chemical plume for 
host i, and w is a surrogate for the size (area) of 
the tree. 

The actual "projection" involves integration. 
We illustrate the technique on the pheromone 
concentrations. To derive an equation of motion 
for a1, the amount of pheromone being released 
at the i-th tree, we integrate centered on that tree, 
and assume that the super-exponential decrease 
of the Gaussians from other trees provides only 
negligible contribution: 

N i"'2a(t) 2· = 2n L _:}__( ) e-1
j
1"•P>ffdl, ~ 2na,(t). 

J= 1 0 Wa1 I 

Inserting the Gaussian ansatz into the PDE for 
A from the global system: 

which gives 
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Repeating for both trees, i = x, y, and the 
other dependent variables results in two sets of 
local equations: 

, r; r4 
n; =- l;(Auuat,;)-- h;r;, 

ro; w 
(10) 

(11) 

Note that eqn (8) is generated using the 
second-moment integral, f< · )/l d/;, as discussed in 
Powell et al. (1996) and Powell & Rose (1997). 
At this point each tree is now coupled by the 
total pheromone level evaluated at location i, 
Awwl.l, and through the infestation function, l;, 
which is evaluated at the tree in question: 

x exp [~ aA0 { (1 + ex )In ( Aoa 1:totat,') 

- AA:,,~}J. 

4. Bifurcation Analysis of Switching 

Our goal is to use the localized model to 
analyse the behavior and success of "switching", 
to understand the circumstances under which the 
successful attack of a focus tree will lead to 
successful attack on a second, nearby tree. Our 
approach will be to assume that the focus tree, 
x, has reached an equilibrium solution to 
(7)-(11), corresponding to rx = 0. The nesting 
MPB in the focus tree (qx) will then create a 
pheromone plume which influences events at the 
second tree, y. We will then pursue a bifurcation 
and stability analysis of the equations at the 
second tree to determine its likelihood of attack 
as a function of parameters and separation from 
the focus tree. 

After simplification of the equilibrium sol­
utions and use of the Gaussian form of A, the 
determining equations for fixed points at the 
focus, i = x, tree become: 

These equations have one, two, or three 
solutions depending on the value of kx, as 
depicted in Fig. l. In biological terms, k 
represents the competing ratio of rates of beetle 
success and tree defensive success. The solutions 
correspond to separate fixed points. The solution 
for the smallest and largest fixed point of beetles 
are stable and attracting, while the middle is 
unstable and repelling. As a result of the middle 
fixed point being unstable, once the population 
exceeds a critical number of nesting MPB a 
nonlinear feedback loop is initiated, resulting in 
the successful infestation of the focus tree. Note 
that on this reduced, single-tree level the 
metastable behavior is equivalent to that 
described by Berryman et al. (1984, 1989). 

To investigate the behavior of attacks at a 
secondary tree, we begin by assuming that the 
focus tree has been successfully infested with a 
population of nesting MPB, qx. Now we can 
examine the behavior at a secondary tree, y to 
which the incoming beetles may switch their 
attack. The total pheromone response now 
receives contribution from both trees, because 
the secondary tree will now also have a group of 
beetles producing pheromones as it undergoes 
attack. The equilibrium equations for the 
secondary tree are: 

qy - kvfy{Atota/,y) = 0, 
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These equations have one to three solutions, and 
will give the values to which q, will converge. 
However, because of the presence of a focus tree, 
the location and behavior for the fixed point 
diagram for the second tree is altered signifi­
cantly, as shown in Fig. 2. Plotting qy vs. ky gives 
the bifurcation diagram of the system as seen in 
Fig. 3. In those regions with one (large) fixed 
point the secondary tree will be successfully 
attacked once an attack starts, since the only 
fixed point is attracting and large. When the 
single fixed point is small the risk to the 
secondary tree is low, since the single attracting 
fixed point corresponds to a very small nesting 
population. Between these regions, where there 
are three fixed points, attacks will only be 
successful after passing a threshold described by 
the unstable intermediate fixed point. 

The parameter values which separate regions 
A (one large fixed point) from B (three fixed 
points) therefore describe the boundary between 
successful and unsuccessful switching. Let 

def 
(12) 

describe the bifurcation curve. The turning-point 
bifurcation separating A from B occurs when: 

I 

0 
q 20 

FIG. 1. Graphical solutions yielding equilibrium solutions 
at the focus tree, /(q) = kq. The horizontal axis measures 
the number of MPB nesting in a tree, while the function I 
is the integrated response of the dispersing population to q 
nesting MPB. Solutions are generated between the lines 
(with slope k) and the infestation curve. The constant k 
measures the relative efficacy of MPB attack and tree 
defensive response; as k increases the tree's response is 
overwhelming and only one (small) fixed point for the 
nesting population exists. At the other extreme, when k is 
small the tree's response is weak and the fixed point 
corresponds to a large nesting population. 

0 

..,, ... --.......... . ' " ' , ' , ' , ' 
' ' ' ' ' ' ' ' ' ' 

20 

FIG. 2. The infestation function at a secondary tree for 
differing densities of attack on the focus tree (-). As the 
density of attack (qx) increases the peak response of the 
infestation curve moves to left(---), or occurs for smaller 
qy (the number of attacking MPB in the secondary tree), 
making successful switching easier to realize. As the trees 
are separated (---) the peak response requires much 
higher nesting densities, making switching less likely to be 
successful. 

F(qy, kr) = O 
dq}' 

(13) 

Generally, two such points exist in the bifur­
cation diagram, Fig. 3. The first, corresponding 
to the smaller beetle population, will give the 
location of the desired boundary. By solving 
eqns (12) and (13) simultaneously, we can 

ky 

FIG. 3. Two bifurcation plots of~· (Ato,ai) k,qv· The 
bifurcation diagram is shifted to the right by decreasing the 
separation between focus and secondary hosts. The 
risk-regions A, Band C, associated with the turning points 
of the first bifurcation curve, divide the parameter space 
into areas of high, medium and low risk, respectively. If this 
were the diagram for a tree which may be switched to, A 
would represent the parameter space in which the switching 
is successful once initiated, while B represents the area in 
which switching is only conditionally successful. 
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d=40 d=20 d=lO 

Movement of switching 
· boundary 

d=5 

FIG. 4. Location of critical points as a function of 
distance (in meters). Each bifurcation diagram corresponds 
to a different choice of distance between focus and 
secondary trees. As distance is increased, the lower turning 
point moves to the left, indicating that the likelihood of 
successful switching to the second tree decreases with 
distance. The bifurcation points are connected in this plot 

determine the location of the switching boundary 
in a two-dimensional parameter space, as 
described in Fig. 4. 

S. Results and Discussion 

We can now begin to predict the likelihood of 
successful switching as a function of critical 
parameters. While there are many degrees of 
freedom, the following parameters will receive 
most of our interest: 

• ro-vigor of secondary tree. In general we 
expect the success of switching attacks to 
decrease proportionally to host resistance. We 
have normalized our model so that ro 1 reflects 
the vigor of a 10" DBH lodgepole pine tree in 
open-stand conditions. 

•!-separation between focus and second 
tree. As a general rule, success of switching 
should decrease with increased distance between 
the two trees; exactly how rapidly the success 
should decrease is what we intend to examine. 

• bt-rate of pheromone loss through the 
canopy. This parameter, we believe, is a strong 
indicator of stand density in the model. As the 
canopy becomes closed, b1 - 0, while b1 may be 
as large as several hundred in windy conditions 
in an open-grown stand. As a general rule, when 

the stand becomes more open (b1 increases) we 
expect the success of switching to be diminished. 

• y-rate of emergence. This constant varies 
with the number of trees attacked in the previous 
year, depending on brood mortality through 
winter and temperature, among other factors. 
Speaking loosely, a single attacked tree may 
produce on the order of 2000 young adults; 
consequently y = 0.2 corresponds to approxi­
mately one infested tree per hectare, with beetles 
emerging over a 20 day (,....., 100 flight hour) 
season. 

Our approach will be to determine the location 
of the successful switching boundary as a 
function of two parameters, holding other 
parameters constant at values in Table 2. 

5.1. VIGOR AND DISTANCE 

Figure 5 illustrates the relationship between 
vigor of the second tree and its separation from 
the focus tree. Also illustrated is the effect of 
canopy closure (as reflected by the loss rate, bt) 
on the switching boundary. As the degree of 
closure changes from completely open (J1 = 360) 
to 70% open (bt = 240) the spatial location of 
the switching boundary can move as much as 
4 m, corresponding to a 100% increase in the 
area affected by a focus tree. By comparison, a 
50% change in vigor of the secondary host (from 
ro = 1 to ro 1.5) occasions only a 1 m change in 
boundary location, which indicates a greater 
sensitivity of the system to micro-environment 
than to host vigor. In any event, switching is very 
likely to be successful for any host within 10 m 
of a successfully attacked focus tree. Field 
observations of successful switching events range 
from 3.2 to 7.3 m (Preisler & Haiganoush, 1993; 
Bentz et al., 1996; Raffa & Berryman, 1983). 

5.2. CANOPY CLOSURE, VIGOR AND DISTANCE 

Stand thinning is one of the only successful 
ways known to interfere with successful MPB 
attack (Amman & Logan, 1998). Traditionally 
this is believed to be due to the fact that thinned 
stands become more vigorous, and thus more 
resistant to MPB attack. However, reduced 
infestation can occur immediately after thinning 
and before residual trees could express changes 
in vigor (Amman et al., 1988; Amman & Logan, 
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1998). This suggests that factors such as 
temperature (Bartos & Amman, 1989) and the 
effects of microclimate on pheromones could 
also be important. Generally speaking, in a 
closed canopy stand pheromone losses may be 
quite small, while in reasonably open, thinned 
stands the loss rate may be large enough to cause 
a significant decrease on a host-to-host scale 
(corresponding to a loss rate in the 1 OOs/fiight 
hour). This effect would be immediate, whereas 
one might expect that it might take at least a 
growth season before stand thinning would 
significantly affect host vigor directly (Amman 
& Logan, 1998). 

The boundary between successful and unsuc­
cessful switching as a function of loss rate, Ot, 
and host separation is depicted in Fig. 6. This 
figure suggests that stand thinning will tend to 
inhibit successful switching by interfering with 
the chemical profile of focus trees. At higher loss 
rates (open canopy), successful switching can 
only occur for separations on the order of 
meters, or less. In a closed canopy (lower loss 
rate), by contrast, switching may successfully 
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FIG. 5. Two parameter plot of ro vs. separation between 
host and secondary tree (measured in meters), with 
variation in these boundaries for varying pheromone loss 
rates (b1) indicated. The parameter ro measures the vigor or 
resistance of the second tree. Changing canopy openness by 
30% (changing o1 from 360 to 240) can move the switching 
boundary by several meters, while changing host vigor has 
only a small effect. 
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FIG. 6. Switching success as a function of pheromone loss 
rate and distance (/). The parameter 01 represents 
pheromone loss rate through the canopy, and consequently 
increases with thinning and shrinks with canopy closure, 
with 360 being an approximate value for losses in an open 
stand with randomly directed, calm winds. Also depicted is 
the influence of host vigor, varying from ro = 0.5 to ro 1.5. 
This figure suggests that stand thinning will tend to inhibit 
successful switching by interfering with the chemical 
signature of focus trees. 

occur on larger scales. (This should not be 
interpreted to mean that stands with average 
stem separation of 10 m are capable of closed 
canopy, but rather as meaning that in closed 
canopy stands, a tree 10m away from a focus 
tree may be successfully switched to). Changes in 
vigor are less significant, generally altering 
boundary location by less than 10%. Based on 
these modelling results, one may infer that the 
utility of stand thinning as a control measure 
depends much more on interfering with the 
chemical communication system of MPB than by 
changing host vigor by removing competition. 

5.3. EMERGENCE AND HOST SEPARATION 

Figure 7 illustrates the sensitivity of the 
boundary to intensity of emergence ( y) and 
separation between focus and secondary host. 
The location of the boundary appears to move 
with the root of the emergence, which indicates 
a linear growth in the area affected by a focus 
tree as a function of emergence. In this figure, the 
effect of changing host vigor is also indicated. 
For high levels of background emergence 
(y > 0.2) the resistance of the second host does 
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FIG. 7. Switching success as a function of distance(/) and 
emergence density, y. The strength of emergence varies from 
weak endemic (y ~ 0.05 HMPB/fhr-hec) to epidemic 
(y ~ 0.5 HMPB/fhrjhec). Over this range of emergence the 
location of the switching boundary can move several 
meters, corresponding to a 100% change in affected area. 
By contrast, varying host vigor (ro) at a particular level of 
emergence only moves the boundary a meter or two. 

not have much impact, moving the boundary a 
meter or two at most. For more endemic levels 
of emergence y "' 0.05 the effect of vigor can be 
much larger, suggesting that host vigor plays a 
much more important role in the behavior of 
endemic infestations than epidemic infestations 
(as suggested by Raffa & Berryman, 1983). 

It is important to mention that y is not a 
constant in time, and may vary wildly from day 
to day depending on temperature and weather 
conditions. No doubt this significantly alters the 
sorts of patterns formed by MPB attack. From 
the standpoint of the circumstances described in 
Fig. 7, when the temperatures wax and wane (a 
l5°C noontime temperature change from day to 
day is not uncommon on our observation plots) 
y may vary from 0 to 0.2, which may change the 
area affected by an infestation focus from zero to 
100 square meters. This, in turn, suggests an 
extreme sensitivity of endemic infestation pattern 
to stochastic variables like host spacing, stand 
demographics, wind direction, and temperature 
fluctuation. 

6. Conclusion 

Spatially explicit representations of ecological 
phenomena are important to a full understand-

ing of complex systems. We have described the 
localization of a mathematically complex PDE 
model to an ODE model which can be 
parametrized using field-collected data. The 
switching behavior of MPB populations from a 
focus tree to other nearby trees is one of many 
important factors contributing to their success as 
a periodic outbreak species. We have evaluated 
our model of switching with respect to changes 
in the value of several parameters: vigor of the 
secondary tree, distance between the focus and 
secondary trees, strength of background emer­
gence and the rate of pheromone loss through 
the canopy. All four factors play an important 
role in the successful colonization of hosts in an 
area. 

One clear indication which emerges is that 
control measures based on stand thinning are 
probably successful, at least in Qart, because of 
interference with the MPB chemical communi­
cation. In most of the cases we examined the 
boundary within which switching is likely to be 
successful was relatively insensitive to host vigor. 
The boundary's spatial location was very 
sensitive to chemical loss rate through the 
canopy, which is probably the parameter most 
strongly reflecting stand density in this model. 
Consequently, our work suggests that interfer­
ence with chemical communication is a critical 
component of stand thinning as a control 
strategy; increasing host vigor by minimizing 
intra-specific competition seems to have a much 
smaller effect. The exception to this observation 
is the behavior of the system at very low 
emergence densities, at which host vigor plays a 
critical role. 

Switching itself may play a critical role in the 
transition from endemic and epidemic infesta­
tions. In general, one may suppose that more 
vigorous trees represent higher-quality food 
resources for attacking MPB. At very low 
population levels, however, vigorous trees are 
difficult for MPB to attack. Consequently, future 
populations based on current infestations will 
continue to be low. When circumstances 
conspire to make successful switching to 
vigorous hosts more likely population levels can 
begin to build. This is a process which may 
require several years, as successful switching 
attacks increase a discrete amount each year 
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based on population gains made in the previous 
years. However, in each growth year the 
conspiracy of factors contributing to successful 
switching to vigorous hosts must continue. If it 
does not, population levels will crash back to 
endemic levels. The picture which emerges, then, 
is not that of a stable endemic population level 
separated from a stable epidemic population by 
an unstable population level. Instead, the 
behavior is much more likely to be that of a 
stable endemic population which, in some 
circumstances, can destabilize and produce 
epidemic excursions. If this is so, the predictions 
made in this paper may become critical in 
determining which real-world populations are 
capable of making such excursions. 
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