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In all organisms, phenotypic variability isan evolutionary stipulation. Because
the development of poikilothermic organisms depends directly on the temperature
of their habitat, environmental variability is also an integral factor in models of
their phenology. In this paper we present two existing phenology models, the dis-
tributed delay model and the Sharpe and DeMichele model, and develop an alter-
nate approach, called the Extended von Foerster model, based on the age-structured
McKendrick–von Foerster partial differential model. We compare the models the-
oretically by examining the biological assumptions made in the basic derivation of
each approach. In particular, we focus on each model’s ability to incorporate vari-
ability among individuals as well as variability in the environment. When compared
against constant temperature mountain pine beetle (Dendroctonus ponderosaeHop-
kins) laboratory developmental data, the Extended von Foerster model exhibits the
highest correlation between theory and observation.

c© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Many organisms are poikilothermic, that is, they have body temperatures directly
tied to the temperature of the environment they live in. A consequence is that,
unlike homeothermic, or warm-blooded, organisms, the speed of their metabolisms
varies with temperature. The physiological clock of poikilothermic organisms does
not advance at a rate directly proportional to the passage of ‘lab’ or ‘clock’ time,
but runs fast or slow depending entirely on how warm or cold their habitat is.
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For generalist or opportunistic poikilotherms and high-R strategists, generating
a broad dispersion of offspring over appropriate seasons can be a success strat-
egy. In these cases, the more unpredictable the environment is the larger the pay
off to having a built-in degree of genetic variability in developmental timing, as a
bet-hedging strategy (Hopper, 1999). For opportunists taking advantage of a vari-
ety of ephemeral resources, placing offspring at broadly distributed times of year
could maximize the chances that some offspring will have access to the necessary
resources for survival. In this context, having clocks which progress at differing
rates for all individuals is probably advantageous.

By contrast, for many specialist organisms timing and synchrony are much more
important. For successful mating and reproduction an entire population of poten-
tial mates must emerge and be at similar developmental stages simultaneously.
Similarly, the timing and development of resource-using life stages must coincide
with the appearance of ephemeral resources for successful foraging in natural envi-
ronments. Finally, most temperate, terrestrial environments are periodically lethal
to poikilothermic organisms living in them due to extremes in temperature, illu-
mination or moisture availability. Most organisms which are vulnerable to such
extremes have developed one or more stage-specific mechanisms (e.g., estivation,
diapause, altered biochemistry, dormancy, hardened spores) to cope, but the expres-
sion of such mechanisms must be synchronized with the environment (Logan and
Bentz, 1999). It is astonishing that poikilothermic organisms do so well in temper-
ate habitats, given the strong selective requisite for life cycle timing and the fact
that their actual physiological clocks run at variable rates.

One of the answers to ‘how can this work?’ is provided byJenkinset al. (2001)
andPowell et al. (2000). Poikilothermic organisms have life histories character-
ized by a progression through several developmental phases. Development through
these stages occurs at a stage-specific rate which depends directly and nonlin-
early on temperature (Zaslavski, 1988). Jenkinset al. (2001) showed that with
two or more life phases with differing developmental rates and even small envi-
ronmental temperature variability, life cycles of populations are capable of syn-
chronization.Powell et al. (2000) showed that quiescent periods, or temperature
regimes in which development actually stops, strongly enhance the synchroniza-
tion effect. Logan and Powell(2001) applied these methodologies to explain a
historic outbreak of mountain pine beetle (MBP,Dendroctonus ponderosaeHop-
kins Coleoptera:Scolytidae) in white bark pine (Pinus albicaulisEngelmann) in
Idaho in the early 1930s. Normally at the high altitudes (and low temperatures)
of white bark stands MPB are not capable of synchronization at one generation
per year, which seems to be necessary for an outbreak (Amman, 1973; Safranyik,
1978). However,Logan and Powell(2001) showed that during the 1930s unusu-
ally warm temperatures allowed a thermally feasible, univoltine (one generation
per year) regime for MPB.

The MPB is poikilothermic and generally undergoes development in a series
of discrete phases: eggs, several larval instars, pupae and adult. In each stage,
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one may denote the fraction of the stage completed as agea ∈ [0, 1], wherea = 0
at the initiation of the lifestage anda = 1 at completion. In the simplest model for
an organism’s developmenta is directly related to the developmental rater (T(t)).
That is, theage of completion,a = 1, can also be expressed as the inverted integral
function of developmental rates from the time of initiation to the time of com-
pletion (or emergence) of the lifestage. Sincer (T(t)) is generally nonlinear and
T highly variable, in practice one numerically calculates the cumulative develop-
mental index, and then scans for the time of completion.

While this theory has the benefits of simplicity and breadth, and has been vali-
dated for the case of MPB, it does present some difficulties. The entire construction
of the theory hinges on the notion that all individuals in the population have the
same developmental rate, characterized by the median individual. This is clearly
not the case, as variability in development is ignored. When individuals are reared
at constant temperatures to parameterize rate curves, invariably there is a distribu-
tion of emergence times about the median (which is used to determine the mean rate
of development at constant temperature). From an evolutionary perspective this is
a logical result; any set of traits with such selective significance must have variabil-
ity in phenotype expressed in order for evolution to have occurred. It is therefore
necessary to develop a model which is fully cognizant of variability, both in rates
of development within the population and of temperature during development.

Accounting for phenotypic variability in varying temperatures is particularly dif-
ficult. At constant temperatures the degree of trait dispersion in a population can
be measured directly. In a fluctuating temperature environment, however, it is not
clear how much of the potential variability whichcould be expressed at a given
temperature isactually accumulated as the population passes through that tem-
perature transiently. Historically two sorts of developmental models have been
proposed to integrate these variabilities. The first, a distributed delay or ‘boxcar’
model (Forrester, 1961; Vansickle, 1977), views development as flows between a
series of well-mixed chambers, so that the distribution of output is conditioned on
the number of chambers and rates of flow between them (proportional to the devel-
opmental rate). Although the number of chambers can be estimated empirically
from the variance, this becomes difficult for organisms with multiple lifestages. As
a result the number of chambers is often arbitrary and a result of the researchers’
bias/experience. Consequently, true emergence variability in fluctuating tempera-
ture regimes cannot be accurately expressed.

A second, probabilistic approach was developed bySharpeand DeMichele
(1977) and Sharpeet al. (1977). Distributions of cumulative rates are used to
explicitly determine distributions of emergence for cohorts of individuals. To
resolve the interaction between temperature fluctuation and phenotypic variability
an additional assumption must be made regarding the accumulation of variance
over developmental time. The usual, ‘same shape’ assumption is that variance
accumulates linearly with cumulative development. An unfortunate consequence
of this assumption is that when development stops for the median individual
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(e.g., when temperatures drop below a developmental threshold) it must stop for
all individuals. However, a wealth of experimental evidence indicates that, while
development may be essentially zero for many or most individuals, there are
usually some individuals still capable of progress at low temperatures. This is
not a difficulty with the Sharpe and DeMichele approachper se, for which (in
principle) variability is assumed around the full developmental curve, including
thresholds, but it is a clear difficulty with the same-shape assumption required to
apply the approach in fluctuating temperature regimes.

In this paper we develop an alternate approach, based on extending the age-
structured McKendrick–von Foerster partial differential model (McKendrick,
1926; von Foerster, 1959) to account for phenotypic variability in developmental
rates. The model includes variability over the full range of the rate curve. In
particular, some individuals in a distribution can still develop even when median
developmental rates are zero. Below we derive the Extended von Foerster (EvF)
equation from minimal assumptions regarding the distribution of developmental
rates in the population and show that it presents no additional burden in computa-
tion or parameterization over the distributed delay/boxcar approach or the Sharpe
and DeMichele approach. We discuss how the three approaches compare and then
parametrize them for MPB, using lab-derived developmental data (Bentz et al.,
1991). Finally, all three models are compared to constant temperature, multiple
stage developmental data collected separately from the parameterization data
(Bentzet al., 2001).

2. EXTENDED VON FOERSTER MODEL

2.1. Derivation. Originally derived byMcKendrick (1926) and then by von
Foerster(1959) to model cell division, the McKendrick–von Foerster equation

∂

∂t
p(a, t) + ∂

∂a
p(a, t) = g(a, t, p(a, t)) (1)

has been applied to many different biological and ecological processes. For popu-
lations t is time,a is age normalized so that 0≤ a ≤ 1, p(a, t) is the population
density, and the termg(a, t, p(a, t)) gives the total gain, or negative loss, of indi-
viduals in the population per age per time (von Foerster, 1959). Traditionally,
equation (1) is given by

∂

∂t
p(a, t) + ∂

∂a
p(a, t) = −κp(a, t) (2)

p(0, t) =
∫ ∞

0
b(a, t)p(a, t)da

whereκ is the mortality rate andb(a, t) the birth rate. In this form the total gain of
individuals is equivalent to the ‘negative’ mortality, and the integral equation for
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birth is included to incorporate reproduction (Oster and Takahashi, 1974). There
are many papers on the McKendrick–von Foerster type of model.Getz (1998)
gives a review of the many different models used in population ecology.

If development is viewed as progression through several lifestages, an alternative
form of equation (2) is needed. The partial differential equation

∂

∂t
p(a, t) + r (T(t))

∂

∂a
p(a, t) = ν(T(t))

∂2

∂a2
p(a, t) (3)

is a variation of the von Foerster equation and will be called the Extended von
Foerster (EvF) equation in this paper. Herer (T(t)) andν(T(t)) are interpreted as
the developmental rate and variability in development, respectively. Because there
is no reproduction when individuals are progressing through lifestages, there is no
need for the integral equation for birth shown in equation (2). In addition, the total
gain of individualsg(a, t, p(a, t)) in equation (3) is represented by a diffusion
term instead of the negative mortality shown in equation (2). This incorporates
the concept that as a population ages, its distribution ‘diffuses’ as the variability
increases. The inclusion of the developmental rate in equation (3) adapts the orig-
inal von Foerster equation for poikilotherms, for whom age and time are linked
variably through temperature.

To derive an expression forν in terms of the mean and variance of developmental
rates, first assume that the developmental rates,r , of the population are normally
distributed with density function

f (r ) = 1√
2πσ 2

e− (r−r0)2

2σ2 , (4)

wherer0 is the mean developmental rate andσ 2 is the variance within the popula-
tion. Consider a characteristic frame of referencez = a − r0t which moves at the
rate of development of the median individual. Nowz can be interpreted as the age
relative to the median individual anda as the physiological age such thata = 0
denotes the median initiation anda = 1 denotes the median completion of a devel-
opmental stage. For an arbitrary interval[b, c] with z ∈ [b, c], the change in the
number of individuals at ages betweenb andc over a time interval�t is given by

Nc
b =

∫ c

b
[p(z, t + �t) − p(z, t)]dz.

The change in population density can also be given in terms of the flux. The
positive fluxϕ+(z, t) is defined as the number of individuals crossing a particular
developmental index,z, in thepositive direction. The negative fluxϕ−(z, t) is the
number crossing in the negative direction, and the total fluxϕ(z, t) is the difference
between the positive and negative flux. It follows that the change in population
density is given by

Nc
b = ϕ(b) − ϕ(c) =

∫ c

b
−∂ϕ

∂z
dz.
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We turn now to determining how the flux at a point relates to the density and
distribution of rates. The probability that an insect is in a small interval at age
b − α and can progress past ageb is

p(b − α, t)
∫ ∞

α
�t

f (r )dr.

Individuals developing past a reference ageb in a time interval�t are those with
a developmental rater such thatr�t ≥ α. It follows that the positive flux per time
�t at the reference agez = b is

ϕ+(z = b, t) = 1

�t

∫ ∞

0

∫ ∞

α
�t

f (r + r0)p(b − α, t)dr dα.

Using a Taylor expansion forp(b − α) about the pointz = b, the positive flux
becomes

ϕ+(z = b, t) = 1

�t

∫ ∞

0

∫ r�t

0
f (r + r0)

×
[

p(b, t) − α
∂

∂z
p(b, t) + α2

2

∂2

∂z2
p(b, t) − · · ·

]
dr dα.

Integrating inr and using the assumption thatf is a normal distribution with stan-
dard deviationσ gives

ϕ+(z = b, t) = σ√
2π

p(b, t) − �t

2

σ 2

2

∂

∂z
p(b, t) + · · · .

After finding the negative flux in a similar manner, the total population flux at the
reference ageb is

ϕ(z = b, t) = ϕ+(b, t) − ϕ−(b, t)

= −�t
σ 2

2

∂

∂z
p(b, t) + O(�t3).

It follows that the net change in population across the interval[b, c] is

ϕ(b) − ϕ(c) =
∫ c

b
− ∂

∂z
ϕ(z, t)dz=

∫ c

b
�t

σ 2

2

∂2

∂z2
p(z, t)dz+ O(�t3). (5)

Recall that for an arbitrary interval[b, c] with z ∈ [b, c], the change in population
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density is also given byNc
b = ∫ c

b [p(z, t + �t) − p(z, t)]dz. Taylor expanding int
results in∫ c

b
[p(z, t + �t) − p(z, t)]dz=

∫ c

b

[
p(z, t) + �t

∂

∂t
p(z, t)

+ O(�t2) − p(z, t)

]
dz

=
∫ c

b
�t

∂

∂t
p(z, t)dz+ O(�t2). (6)

Equating (5) and (6) and simplifying gives, at leading order in�t ,
∫ c

b
�t

[
∂

∂t
p(z, t) − σ 2

2

∂2

∂z2
p(z, t)

]
dz = 0.

Since the relation must hold for arbitrary (small)�t , anecessary condition is that
the population satisfies

∂p

∂t
= σ 2

2

∂2 p

∂z2
.

Becausez = a − r0t , this becomes

∂p

∂t
+ r0

∂p

∂a
= σ 2

2

∂2p

∂a2
, (7)

wherer (T(t)) andν(T(t)) in equation (3) are equivalent tor0 andσ 2/2 in equa-
tion (7), respectively. The left-hand side of equation (7) represents the change in
population with respect to time and age, the change over age being affected by the
mean developmental rate. The right-hand side models the diffusivity of the pop-
ulation over age on the increase of developmental variability in the population as
development proceeds. In other words, as individuals in the population age, the
variance increases or decreases proportional to the squared standard deviation of
developmental rates.

An interesting and biologically disturbing consequence of the diffusion approx-
imation (7) is that some proportion of individuals, in principle, is always aging in
thenegativedirection. This is a direct result of the initial assumption that develop-
ment rates are distributed normally with meanr0 and finite variance. This means
that a measurable fraction of individuals in the population will have both unrealis-
tically large as well as negative rates of development. More generally, the EvF has
the same difficulty as all diffusion approximations: extremely rapid propagation
of near-infinitesimal disturbances in both positive and negative directions. These
errors are negligible, as witnessed by the near-ubiquitous application of diffusion
approximations in spatiotemporally extended systems [e.g.,Murray (1989) for an
overview]. In the next section, exact solutions will be calculated, and these will
illustrate that the negatively-aging portion of the population does not unrealisti-
cally affect the distribution of predicted emergence times.
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2.2. Solution. The simplest application of equation (3) is to describe the distri-
bution of developmental milestones (eggs hatching, larvae molting, etc.) at con-
stant temperature, given an initial population all of the same age at the same point
in time. This leads to the initial value problem

∂p

∂t
+ r

∂p

∂a
= ν

∂2 p

∂a2
, (8)

p(a, 0) = δ(a), −∞ < a < ∞, 0 < t.

Using thetransformationz = a − r t andτ = t , the initial value problem becomes

∂p

∂τ
= ν

∂2p

∂z2
, (9)

p(z, 0) = δ(z), −∞ < z < ∞, 0 < τ.

This equation is recognizable as the heat equation, the solution of which can be
found in Logan(1997) and DuChateau and Zachmann(1986) as well as many
other differential equation texts. After transforming the solution back intoa andt ,
we have

p(a, t) = 1√
4πνt

exp

[
−(a − r t )2

4νt

]
, 0 < t,

the solution for drift/diffusion of an initial spot, with the role of space replaced
with age,a. For individuals terminating a life stage(a = 1), thepredicted pdf is

p(a = 1, t) = 1√
4πνt

exp

[
−(1 − r t )2

4νt

]
, 0 < t. (10)

As shown inSection 2.1, if developmental rates are normally distributed we can
replacer andν with r0 andσ 2/2, respectively, giving

p(a = 1, t) = 1√
2πσ 2t

exp

[
−(1 − r0t)2

2σ 2t

]
, 0 < t. (11)

Thus, the population density at the end of each life stage is characterized by the
mean and variance of the developmental rates.

3. DISTRIBUTED DELAY MODEL

3.1. Derivation. The distributed delay model was originally derived by engi-
neers to describe the flow of entities through a process, and has since been used
in a wide variety of disciplines to express delays in development, production, etc.
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(Forrester, 1961; Vansickle, 1977). One of the first to formulate and apply the dis-
tributed delay model to developmental biology,Manetsch(1976) converted an inte-
grodifferential equation into a system of ordinary differential equations to describe
the effect of maturation in an insect population (Plant andWilson, 1986).

When applied to populations, the distributed delay model divides the length
of an organism’s life, or lifestage, intok discrete phases, or boxcars (Vansickle,
1977). In the i th boxcar there arePi individuals, a fractionλi of which move on
to the next phase per time. This leads to the differential equation describing the
population change

d Pi

dt
= λi−1Pi−1 − λi Pi . (12)

If a is a continuous variable representing age such that 0≤ a ≤ 1, Pi is the
population, andp is the population density, thenPi (t)

.= p(ai , t)�a for a boxcar
of width �a. Hereai is interpreted as the age in thei th boxcar such thatai = i�a,
Pi (t) as the population in thei th boxcar at timet , and p(ai , t) as the population
density in thei th boxcar at timet (Edelstein-Keshet, 1988). Taylor expanding
p(ai−1, t) and assuming that development is constant throughout the lifestage
(λi−1 = λi = λi+1 = λ), equation (12) becomes

∂p

∂t
+ λ�a

∂p

∂a
= λ�a2

2

∂2p

∂a2
+ O(�a3). (13)

Thus, for a large number of boxcars the EvF and distributed delay models can be
expected to behave similarly.

3.2. Distributed delay solution. Given an initial input of individuals into the
first phase, or boxcar, such thatp(a = 0, t) = δ(t), Manetsch(1966, 1976) and
Vansickle (1977) have shown that the distribution of emergence will be given by

p(a = 1, t) = k(λt)k−1

(k − 1)! e−λt , 0 < t, (14)

wherek = 1/�a is the total number of phases or boxcars in the process.
If we make the assumption that�a � 1 (or k 	 1) and that (13) describes

continuous population change, the solution of the initial value problem

∂p

∂t
+ λ�a

∂p

∂a
= λ�a2

2

∂2p

∂a2
(15)

p(a, 0) = δ(a), −∞ < a < ∞, 0 < t,

follows the solution of the initial value problem (8) in the Extended von Foerster
model. But now the fundamental solution at agea = 1 andtime t is

p(a = 1, t) = 1√
2πλ�a2t

exp

[
−(1 − λ�at)2

2λ�a2t

]
, 0 < t, (16)
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Figure 1. Population distribution estimated by the distributed delay model for individuals
at agea = 1, where(λ,�a) = (15, 0.01), (7.5, 0.02), and(5, 0.03). Choices for(λ,�a)

were made to maintain a constant median development time for all profiles. Although each
distribution has the same median, the variance is clearly dependent on these choices.

and is dependent on the number of phases, or boxcars.λ and�a can be easily
estimated from the mean development rater0 of the empirical data as there are an
infinite number of solutions(λ,�a) that satisfy the equationr0 = λ�a. But, as
shown inFig. 1, because the variability in the distributed delay model also varies
with �a (σ 2 = λ�a2), there are an infinite number of distributions with identical
mean development times and different variances.

4. SHARPE AND DEMICHELE MODEL

4.1. Derivation. Sharpeet al. (1977) derived another model of the reaction
kinetics for insect development based on several assumptions about the underlying
developmental control enzymes. These assumption are: (a) a single control
enzyme regulates development and hence the developmental rate of the organism
(Sharpeand DeMichele, 1977); (b) the rate constant of active enzymes is temper-
ature dependent and when multiplied by the concentration of active enzymes is
proportional to the developmental rate (Sharpeand DeMichele, 1977); (c) the con-
trol enzyme can exist in an active state and two temperature dependent inactivation
states (Sharpeand DeMichele, 1977); (d) the control enzyme has a symmetric dis-
tribution about some mean concentration (Sharpeet al., 1977). In reference to the
derivation of reaction kinetics for insect development bySharpeand DeMichele
(1977), the model will be called the Sharpe and DeMichele model in this paper.
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Given the pdf of ratesf (r ) for A ≤ r ≤ B where A and B are the mini-
mum and maximum developmental rates, respectively, the cdf of rates isF(r ) =∫ r

A f (s)ds = Prob[R ≤ r ]. In addition, the cdf of emergence times can be given
by

G(t) = Prob[
 ≤ t]. (17)

F(r ) gives the probability thatR, the developmental rate required to complete
a lifestage, is less than or equal to the developmental rater , andG(t) gives the
probability that
, thetime required to complete a lifestage, is less than or equal
to timet . If agea is defined such that 0≤ a ≤ 1, development is completed at age
a = 1 and the product of developmental rate and time is equal to one(r t = 1). It
follows that the developmental rate is inversely proportional to the emergence time
and equation (17) can be written as

G(t) = Prob[1/R ≤ t]
= Prob[R ≥ 1/t]
= Prob[R ≥ r ].

By definition of the cdf, this becomes

G(t) = 1 −
∫ r=1/t

A
f (s)ds

= 1 − F(r )

=
∫ t

1/B
g(u)du.

Becausef (r )dr = f (1/t)dt/t2, it follows that

g(t) = 1/t2 f (1/t) for 1/B ≤ t ≤ 1/A

= r 2 f (r ) for A ≤ r ≤ B.

Thus, if any of the following four equations are given, the remaining three can be
found:

f (r ) = pdf of rates forA ≤ r ≤ B, (18)

g(t) = r 2 f (r ) for 1/B ≤ t ≤ 1/A, (19)

F(r ) =
∫ r

A
f (r )dr, (20)

G(t) = 1 − F(r ) =
∫ t

1/B
g(u)du. (21)
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For the purposes of comparison with the other two models, if we assume that the
developmental rates are normally distributed such that

f (r ) = 1√
2πσ 2

e− (r−r0)2

2σ2 , (22)

the pdf of emergence times becomes

g(t) = 1

t2
√

2πσ 2
e− (1−r0t)2

2σ2t2 . (23)

Thenonlinear least-squares fit of the data from observed emergence gives the mean
and standard deviation of development. This information completely describes
equations (18)–(21), which in turn describes development at constant temperature.

5. MODEL COMPARISON

At constant temperature, the distributed delay model is essentially a numerical
approximation of the von Foerster equation by the method of lines. An important
difference is that the number of phases of cohorts in each developmental stage must
be estimated from the data for the distributed delay model. In other words,�a is
an arbitrary interval length that must be chosen so that the termλ�a in equation
(13) of the distributed delay model represents the probability that an individual
will move to the next phase. In the EvF model, the probability of development is
simply given by the developmental rater , whichcan be approximated as the mean
developmental rater0.

At constant temperature, with a known target population variance, it is possible
to chooseλ and�a to generate the correct statistical behavior in the output distri-
bution. The relationship between the EvF model and the distributed delay model
can also be used to estimate�a. That is, if we assume that�a is small,

ν

r
≈ λ�a2

2λ�a

≈ �a

2
.

However, this implies that the developmental rate and variability depend on the
size of each phase or cohort. Two types of distributed delay model were developed
to address this problem: the linear chain model (Manetsch, 1976, 1980; Vansickle,
1977; MacDonald, 1978) and the modified Leslie matrix model (Slobodkin, 1953;
Wernerand Caswell, 1977). But these models only succeed in establishing a range
of values of�a for which each model is best suited (Plant andWilson, 1986).

The Sharpe and DeMichele model takes a different approach to finding the
developmental distribution of a population. Like the EvF model, the Sharpe and
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Figure 2. Distributions of emergence times estimated by the EvF model (solid) and the
Sharpeand DeMichele model (dashed) for individuals at agea = 1 with r0 = 0.15 and
σ = 0.04. The distribution estimated by the distributed delay model (open circles) is
equivalent tothe EvF distribution withλ = 14.0625 and�a = 0.01066.

DeMichele model assumes that the developmental rates follow a particular distri-
bution. But instead of using the assumption to derive a partial differential equation
based on flux and population change, the Sharpe and DeMichele model uses the
pdf and cdf of rates as well as the pdf and cdf of emergence times to describe
development at constant temperatures.

Assuming that the developmental rates are normally distributed, the pdf of emer-
gence times for the Sharpe and DeMichele model is given by equation (23). When
compared to equation (11), the fundamental solution of the EvF equation, we can
see that although both models share the same mean developmental rater0, the rela-
tionship between the observed variance and the predicted varianceσ 2 is different
for parameter valuesr0 = 0.15 andσ = 0.04 (Fig. 2). Now we must ask if there
exists an appropriate combination of parameter values for which the EvF model
and Sharpe and DeMichele model predict the same emergence distribution.

Supposing that the pdf of emergence times in the Sharpe and DeMichele model is
equation (11) from the EvF model, it follows that the distribution of developmental
rates in the Sharpe and DeMichele model is

f (r ) = 1

r 2
p

(
1,

1

r

)
= 1√

2πσ 2r
e− (r−r0)2

2σ2r . (24)

Equation (24) is clearly not the normal distribution, which was used in the deriva-
tion of the EvF model inSection 2.1. In other words, emergence distributions for
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Figure 3. Distributionsof developmental rates estimated by the EvF model (normal distri-
bution, solid) and the Sharpe and DeMichele model (dashed) by assuming that both models
share the same emergence distribution for individuals at agea = 1 with r0 = 0.15 and
σ = 0.04. The emergence distributions are equivalent only if the distributions of develop-
mental rates are different.

the Sharpe and DeMichele model and the EvF model imply that the distribution
of developmental rates for each model is different (Fig. 3). Like the distribu-
tion of emergence times inFig. 2, both models share the same mean develop-
mental rate but the relationship between the observed and predicted variances is
different.

The explanation for this dichotomy between the Sharpe and DeMichele model
and EvF model stems from the original derivation. The emergence distribution of
the Sharpe and DeMichele modelg(t) is intrinsically dependent on the distribution
of developmental ratesf (r ), asg(t) = r 2 f (r ). In contrast, the basic structure of
the EvF model, and hence the emergence distributionp(a = 1, t), is not affected
by the distribution of developmental rates. Only the center and spread of the emer-
gence distribution for the EvF model will change with varying developmental rate
distributions, while the center, spread, and shape of the Sharpe and DeMichele
emergence distribution will all change significantly.

6. PARAMETRIZATION FOR MPB

6.1. Methods. To test the accuracy of the models, lab-derived MPB develop-
mentaldata were analyzed (Bentz et al., 1991). Providing emergence times at
specific temperatures, the data were obtained through a laboratory experiment in
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which a sample of beetles at each lifestage were held at a constant temperature and
their time of emergence recorded (Logan and Amman, 1986).

Data were analyzed for six different life stages: egg, instar 1, instar 2, instar 3,
instar 4, and pupae. The term instar denotes a lifestage between two successive
molts. Samples of insects were held at several different constant temperatures,
but mortality reduced the number of different temperatures at which successive
lifestages were observed. Consequently, beetles in the egg stage were reared at
8, 10, 12.5, 15, 17.5, 20, 22.5, 25, and 27.5◦C; instar 1 at 5, 10, 15, 20, 25, and
27.5◦C; instar 2 at 10, 15, 20, 25, and 27.5◦C; instar 3 at 15, 20, 25, and 27.5◦C;
and both instar 4 and pupae at 15, 20, and 25◦C (Logan and Amman, 1986; Bentz
et al., 1991).

Using the Nelder–Mead simplex search algorithm and the mathematical pro-
gramming package (MATLAB), values of the developmental parameters were
chosen that minimized the difference, or error, between the normalized cumulative
frequency and the cumulative distribution function predicted by the respective
model (Heath, 1997). Three different functions were used to quantify the error:
the absolute value of the difference, the sum of squares, and the log of the absolute
difference plus one. This served to investigate the stability of the estimates,
eradicate sensitivity to variable data, and cross-check the error functions. The
search was initialized by the mean developmental rate and the variance of the data
divided by two. The difference between the number of observed emerged beetles
and the number predicted by the models was computed for each new choice of
developmental parameters.

After running the program repeatedly and analyzing the results, we found that the
absolute value and log of the difference usually gave equivalent parameter values,
but theparameters estimated using the sum of squares were sometimes drastically
different. This was probably caused by the sum of squares’ overadequate represen-
tation of errors greater than one. In this paper, results using the absolute value of
the difference will be presented.

Estimates of the developmental rater and variabilityν in the EvF model were
made for each lifestage and temperature by fitting the data from observed emer-
gence to the predicted cumulative population density, the integral of equation (10).
Similarly, the mean and variability(ν = σ 2/2) of development for the Sharpe and
DeMichele model were found by fitting the data from observed emergence to equa-
tion (21), the cdf of emergence times as predicted by the Sharpe and DeMichele
model. The parameter values found for both models at each lifestage and temper-
ature are given inTable 1.

6.2. Comparison of results. Although theR2 valuesfor the EvF model and the
Sharpeand DeMichele model are equivalent, the estimated ‘best fit’ parameter
values differ in varying degrees (Table 1). This is particularly evident in the vari-
ability parameter and re-emphasizes the conclusions drawn inSection 5regarding
the differences between the models.
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Table 1. Parameters estimated by minimizing the absolute value of the error between pre-
dicted and observed emergence and their respectiveR2 values. Emergence was predicted
by the EvF model usingr E, νE and R2

E , and the Sharpe and DeMichele model usingrS,
νS, andR2

S.

Egg Instar 1 Instar 2 Instar 3 Instar 4 Pupae

5◦C n 5
r E 0.01025774
rS 0.99999983
νE 0.00000097
νS 0.00089318
R2

E 0.68

R2
S 0.81

8◦C n 11
r E 0.02924079
rS 0.02878648
νE 0.00019728
νS 0.00000616
R2

E 0.99

R2
S 0.99

10◦C n 7 15 11
r E 0.03498788 0.06811402 0.02663810
rS 0.03476382 0.06549600 0.00003548
νE 0.00000241 0.00133039 0.00999886
νS 0.00000190 0.00008633 0.00068604
R2

E 0.83 0.99 0.77

R2
S 0.98 0.99 0.82

12.5◦C n 9
r E 0.05096118
rS 0.04045115
νE 0.00036718
νS 0.00001699
R2

E 0.98

R2
S 0.99

15◦C n 6 10 6 4 2 2
r E 0.07858796 0.14139784 0.13457354 0.07974721 0.04411733 0.04210553
rS 0.07767692 0.12773795 0.11663893 0.99988291 0.04411733 0.04210553
νE 0.00044781 0.00999144 0.00999655 0.00020856 0.00000005 0.00000004
νS 0.00004071 0.00126655 0.00176600 0.00758388 0.00000005 0.00000004
R2

E 0.99 0.98 0.96 0 0.99 0.99

R2
S 0.99 0.98 0.96 0 0.99 0.99

17.5◦C n 4
rS 0.11814434
r E 0.11811877
rS 0.11814434
νE 0.00001804
νS 0.00000414
R2

E 0.85

R2
S 0.85
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Table 1. (continued).

Egg Instar 1 Instar 2 Instar 3 Instar 4 Pupae

20◦C n 5 5 3 4 13 6
r E 0.14512152 0.37719247 0.30373741 0.17909991 0.09878847 0.16853505
rS 0.14531136 0.31964464 0.30954991 0.56831589 0.00005248 0.16237065
νE 0.00047772 0.00077569 0.00405885 0.00997423 0.00999432 0.00257269
νS 0.00006777 0.00348248 0.00311232 0.00999753 0.00415625 0.00045359
R2

E 0.99 0.95 0.79 0.80 0.95 0.98

R2
S 0.99 0.94 0.79 0.80 0.96 0.98

22.5◦C n 2
r E 0.16428571
rS 0.16428571
νE 0.00002685
νS 0.00002685
R2

E —

R2
S —

25◦C n 3 6 8 9 12 7
r E 0.18303779 0.37508458 0.24644016 0.14330973 0.13849435 0.18614447
rS 0.17922628 0.33908673 0.23024597 0.05299251 0.00002384 0.09110462
νE 0.00032212 0.00998743 0.00999831 0.00998595 0.00999684 0.00176397
νS 0.0003068 0.00999209 0.00312535 0.00999233 0.00886165 0.00554327
R2

E 0.99 0.60 0.99 0.82 0.82 0.85

R2
S 0.99 0.64 0.99 0.94 0.93 0.85

27.5◦C n 3 10 12 6
r E 0.18713500 0.25549177 0.14698513 0.05292529
rS 0.20450056 0.24693988 0.11216188 0.00003604
νE 0.00014509 0.00603980 0.00999556 0.00292613
νS 0.00013361 0.00191146 0.00267466 0.00186298
R2

E 0.78 0.98 0.99 0.92

R2
S 0.78 0.98 0.99 0.92

Figs. 4–9 use information garnered from the parametrization. Although the
parameters were estimated at several temperatures in all lifestages, it is important
to find the developmental parameters for temperatures not studied. There are two
standard ways to accomplish this: by assuming that the parameters are related
and follow a particular distribution, or that one or more of the parameters remains
constant over the lifestage. For the Sharpe and DeMichele model, the first approach
was used. Linear regression of the estimated standard deviationσ on the estimated
developmental rater provided the slopec of the lineσ = cr for each lifestage.
Computing the mean developmental rater0 from the data and then usingr0 and
c to approximate the standard deviationσ , emergence could be estimated for all
temperatures. The linear relationship between the estimated standard deviationσ

and the mean developmental rater0 is shown inFig. 12, whereit is clear that the
linear association is weak. Alternatively, the EvF model used constant values. The
mean of the variability parameterν estimated by the EvF model was taken over
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Figure 4. Observed cumulative frequency of hatched mountain pine beetle eggs and fre-
quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be found inTable 2.

all temperatures. This value was then used, as well as the mean developmental rate
r0, in equation (10) to predict emergence for each lifestage and temperature.

On examining Table 2 andFigs. 4–9, we can see that the EvF model performs
as well as, if not better than, the Sharpe and DeMichele model. This is somewhat
surprising given that the EvF model uses constant variabilityν for all temperatures
while the variability in the Sharpe and DeMichele model changes dynamically with
temperature.

7. VALIDATION

Constant temperature, multiple stage developmental data for the MPB was used
to compare the performance of the distributed delay, Sharpe and DeMichele, and
EvF models. MPB-infested sections of lodgepole pine were held at 21◦C and adult
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Figure 5. Observed cumulative frequency of molted mountain pine beetle instar 1 and fre-
quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be found inTable 2.

brood emergence monitored every other day, resulting in an observed distribution
of total emergence time (Bentzet al., 2001).

Developmental rates,r , for each lifestage were approximated using meth-
ods referred to inLogan and Amman(1986), Bentz et al. (1991), and Jenkins
et al. (2001). The variability,ν, used in the EvF model was estimated from the
parametrization data inSection 6. This was done by averaging the variability
for each lifestage over temperature, since no trend was apparent. For the Sharpe
and DeMichele model, the slopec of the line σ = cr (seeSection 6.2) was
found for each lifestage by linear regression on the observed parametrization
data. These slopes were then used to find the standard deviation of the validation
data. To approximate the optimal number of boxcars(k = 1/�a) in the dis-
tributed delay model, the accumulated variance estimated by the EvF model was
compared to the accumulated variance estimated by the distributed delay model.
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Figure 6. Observed cumulative frequency of molted mountain pine beetle instar 2 and fre-
quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be found inTable 2.

That is,

ν1t1 + ν2t2 + · · · + ν8t8 = ν1

r1
+ ν2

r2
+ · · · + ν8

r8

≈ λ1�a2

2λ1�a
+ λ2�a2

2λ2�a
+ · · · + λ8�a2

2λ8�a

= 4�a.

For mountain pine beetles developing at a constant 21◦C, the optimal number of
boxcars was approximated ask ≈ 22 (�a ≈ 0.04445).

The observed and predicted cumulative emergence of adult MPB at 21◦ are
shown inFig. 10. The EvF model with constant variance is superior to the Sharpe
and DeMichele model using the same-shape assumption for variance withr 2 val-
ues of 0.985 and 0.879, respectively. Although the distributed delay model with
k = 22 boxcars might be expected to be very similar to the EvF model, the EvF
model exhibits a higher degree of accuracy withr 2 = 0.985 whiler 2 = 0.946 for
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Figure 7. Observed cumulative frequency of molted mountain pine beetle instar 3 and fre-
quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be found inTable 2.

the distributed delay model. This is due, in part, to the fact that in the distributed
delay model, the variance and developmental rate for each lifestage depend on�a,
which wasestimated from the predicted cumulative variance in the EvF model.
Thus, the distributed delay model is constrained by�a and is less descriptive than
the EvF model.

8. DISCUSSION

While the EvF approach provided a clearly superior fit to data, even the worst of
the three models captured approximately 95% of the variability. To more clearly
accentuate the pros and cons of the different approaches, we must consider their
behavior in variable-temperature regimes. This will aid in model comparison and
selection and give valuable insight for future research.

As the EvF model incorporates environmental and phenological variability into
its basic structure, expanding the model to account for variable temperatures is



1842 E. Gilbertet al.

Figure 8. Observed cumulative frequency of molted mountain pine beetle instar 4 and fre-
quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be found inTable 2.

reasonably straightforward. The population distribution function of individuals
completing lifestagej at timet and in a variable-temperature environment is given
by

pj (a = 1, t) =
∫ t

0
pj −1(a = 1, t)

1√
4πν j (t − τ)3

× exp


−

(
1 − ∫ t

τ
r j [T(s)]ds

)2

4ν j (t − τ)


 dτ, 0 < t. (25)

This follows from replacing theδ initial condition in equation (8) with an appro-
priate initial distribution (the distribution of individuals from the previous lifestage)
and using the convolution theorem in time. Thus, using only minimal assumptions
about the distribution of developmental rates (seeSections 1and 2.1), the EvF
model describes the complexity of development in a variable-temperature environ-
ment.

The distributed delay model is more difficult to connect with constant-
temperature parameters in a variable-temperature environment, primarily because
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Figure 9. Observed cumulative frequency of molted mountain pine beetle pupae and fre-
quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be found inTable 2.

it is virtually impossible to determine the number of boxcars or phases for each
temperature and lifestage. Based on the idea that development is akin to the flow
of entities (or individuals) through a series of phases or boxcars, the output of the
distributed delay model is dependent on the rates of flow(r = λ�a) between
the phases and the number of phases(k = 1/�a) in the process. To achieve
some target variability as rates change with temperature, we must change�a
dynamically, an unpalatable and difficult task requiring ongoing structural changes
in the model.

To use the Sharpe and DeMichele model in variable-temperature regimes, two
assumptions must be made: (1) the integral function of the pdf describing develop-
ment atdifferent constant temperatures gives the development at variable temper-
atures; (2) the mean and variance of the developmental rates are linearly propor-
tional. The second assumption implies thatσ is functionally dependent onr0 and
the pdf of the developmental rates is univariate.

If it is assumed that development is cumulative in a variable-temperature envi-
ronment, then the development completed in the lifestage between timeτ and time
t and at temperatureT is ∫ t

τ

r [T(s)]ds.
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Table 2. Parameters used to generateFigs. 4–9. The mean developmental rate computed
from existing data was used in both the EvF model with developmental rater E and the
Sharpeand DeMichele model with developmental raterS (r E = rS). The computation of
variability νE , νS is described inSection 6.2.

Egg Instar 1 Instar 2 Instar 3 Instar 4 Pupae

5◦C n 5
r E 0.00985729
rS 0.00985729
νE 0.00463262
νS 0.04148186
R2

E 0.50
R2

S 0.61

8◦C n 11
r E 0.03007893
rS 0.03007893
νE 0.00022272
νS 0.00000291
R2

E 0.96

R2
S 0.93

10◦C n 7 15 11
r E 0.03476382 0.06493120 0.02498197
rS 0.03476382 0.06493120 0.02498197
νE 0.00022272 0.00463262 0.00880963
νS 0.00000438 0.00017795 0.0000000001
R2

E 0.92 0.90 0.75

R2
S 0.97 0.98 —

12.5◦C n 9
r E 0.05034782
rS 0.05034782
νE 0.00022272
νS 0.00000894
R2

E 0.98
R2

S 0.97

15◦C n 6 10 6 4 2 2
r E 0.07715618 0.12225730 0.12573322 0.06933593 0.04411733 0.04210553
rS 0.07715618 0.12225730 0.12573322 0.06933593 0.04411733 0.04210553
νE 0.00022272 0.00463262 0.00880963 0.00577372 0.00666374 0.00144556
νS 0.00002119 0.00067686 0.00123547 0.04147216 0.02514204 0.00018678
R2

E 0.97 0.95 0.95 −0.49 0.99 0.99

R2
S 0.98 0.97 0.96 0 0.99 0.99

17.5◦C n 4
r E 0.11823743
rS 0.11823743
νE 0.00022272
νS 0.00004901
R2

E 0.83
R2

S 0.83



Predicting Developmental Milestones 1845

Table 2. (continued).

Egg Instar 1 Instar 2 Instar 3 Instar 4 Pupae

20◦C n 5 5 3 4 13 6
r E 0.13614831 0.33949560 0.23958333 0.11382502 0.09632276 0.16589709
rS 0.13614831 0.33949560 0.23958333 0.11382502 0.09632276 0.16589709
νE 0.00022272 0.00463262 0.00880963 0.00577372 0.00666374 0.00144556
νS 0.00007415 0.00423831 0.00870177 0.01339794 0.00000004 0.00277755
R2

E 0.95 0.91 0.68 0.65 0.94 0.97
R2

S 0.99 0.96 0.77 0.80 — 0.96

22.5◦C n 2
r E 0.16428571
rS 0.16428571
νE 0.00022272
νS 0.00009477
R2

E —

R2
S —

25◦C n 3 6 8 9 12 7
r E 0.18214286 0.37112735 0.25568906 0.17717066 0.13576822 0.22112970
rS 0.18214286 0.37112735 0.25568906 0.17717066 0.13576822 0.22112970
νE 0.00022272 0.00463262 0.00880963 0.00577372 0.00666374 0.00144556
νS 0.00011280 0.00476958 0.00481427 0.00011659 0.000000007 0.00087443
R2

E 0.99 0.50 0.98 0.73 0.77 0.41

R2
S 0.98 0.58 0.97 −2.40 — −1.08

27.5◦C n 3 10 12 6
r E 0.17467532 0.28278123 0.14815499 0.07206198
rS 0.17467532 0.28278123 0.14815499 0.07206198
νE 0.00022272 0.00463262 0.00880963 0.00577372
νS 0.00014685 0.00252954 0.00114245 0.00000000005
R2

E 0.13 0.98 0.98 0.80
R2

S 0.78 0.98 0.85 —

Assumption (2) expands this concept into a full population distribution (Sharpe
and DeMichele, 1977). That is, if f (r ) has meanr0 and standard deviationσ for
each temperatureT , thenσ = cr0 andc can be estimated by linear regression ofσ

onr0. Now the distribution of emergence times for individuals completing lifestage
j at timet under varying temperatures is

pj (t) =
∫ t

0
pj −1(t)

1

(t − τ)

√
2πcj

∫ t
τ

r j [T(s)]ds

× exp


−

(
1 − ∫ t

τ
r j [T(s)]ds

)2

2c2
j

(∫ t
τ

r j [T(s)]ds
)2


 dτ, 0 < t. (26)
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Figure 10. Observed cumulative emergence of mountain pine beetle adults and emergence
predicted by the distributed delay (withk = 22), Sharpe and DeMichele and EvF models.
Developmental ratesr were predicted using the rate curves described inJenkinset al.
(2001). Variability for the EvF model was found by averagingν over temperature for each
lifestage[ν = (0.0002, 0.0046, 0.0088, 0.0058, 0.0067, 0.0014)]. Theslopec of the line
σ = cr was found using parameterization data and was used to estimate the variability in
the Sharpe and DeMichele model[c = (0.0838, 0.1869, 0.4262, 0.2880, 5.0828, 0.4590)].

From a computational perspective, the EvF approach (25) hassimilar computa-
tional complexity to the Sharpe and DeMichele same-shape approach (26). Both
involve convolutions of emergence distributions with probability kernels involving
net development occurring between timesτ andt , resulting inO(n2) computations
required forn temporal increments. Consequently, the EvF approach is no more
costly than the widely used Sharpe and DeMichele model. It is more mechanisti-
cally derived and is not hampered by the necessity of a same-shape assumption on
the relationship between accumulation of development and variance.

In real-world environments with high thermal variability the differences between
the EvF and same-shape approaches become apparent, as does the need to include
the effect of phenotypic variance in phenology models. To illustrate the cumulative
effect of these differing assumptions in a variable temperature environment, equa-
tions (25) and (26) were applied stage-wise to MPB developing in the Sawtooth
National Recreation Area of central Idaho. An individual tree was baited with
a pheromone lure and the number and timing of adult beetles attacking the tree
during the summer of 2001 recorded and used to initialize the model. Phloem tem-
peratures were recorded hourly for an entire developmental period. Results of both
EvF,same-shape, and a median-individual model with no phenotypic variance are



Predicting Developmental Milestones 1847

Figure 11. Observed and predicted cumulative emergence of MPB in the Sawtooth
National Recreation Area. EvF (solid), same-shape Sharpe and DeMichele (dots), and
median-individual models (dash–dots) were initialized using the recorded number and
timing of adult beetles attacking a pheromone baited tree during the summer of 2001.
Phloem temperatures were recorded hourly for an entire developmental period and emer-
gence observed during the summer of 2002.

plotted inFig. 11 in cumulative form, with actual cumulative observed emergence
plotted for reference.

All three models are parametrized with laboratory data, as described in previous
sections, not ‘fit’ to the observations. Nonetheless, the correspondence between the
prediction of the EvF model and the data is still excellent, with anr 2 of 0.93. The
same-shape Sharpe and DeMichele model exhibits a correspondence ofr 2 = 0.59.
The need to include variance is also illustrated; a median-individual model (all
variances zero) is also plotted, and gives anr 2 of 0.84. This preliminary analy-
sis indicates the need to include realistic variance in developmental timing and the
superiority of the EvF approach in a variable temperature environment. More com-
plete discussion of the field data presented here and the computational application
of the EvF model in variable temperature environments will be the subject of a
future paper.

9. CONCLUSION

This paper discusses three developmental models: the Extended von Foer-
ster (EvF) model, the distributed delay or boxcar model, and the Sharpe and
DeMichele model. Each model has positive and negative qualities in constant and
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Figure 12. Estimated standard deviations vs. estimated developmental rates for each
lif estage. Parameters were found using the Sharpe and DeMichele model and show only a
weak linear association.

variable-temperature environments. The distributed delay model, with its compart-
mentalized structure, is a good way to initially envision development, and is simple
to implement. Clear and straightforward, the model is easy to understand and
parametrize at constant temperatures. But the underlying idea that an organism’s
lifestages can be divided into phases or boxcars is flawed. Choosing�a, or the
length of each boxcar, becomes difficult when examining development over all
lifestages at constant temperature and virtually impossible at variable temperatures.
Consequently, researchers often choose a constant�a, either empirically or exper-
imentally, instead of changing�a dynamically with temperature. As a result, the
accumulation of variability in fluctuating temperature regimes is largely inaccurate.

The Sharpe and DeMichele model uses the distribution of developmental rates
to find the distribution of emergence times. At constant temperatures, this prob-
abilistic methodology is relatively simple to implement and parametrize. How-
ever, at variable temperatures additional assumptions must be made to estimate
the full distribution of emergence times. In particular, the ‘same-shape’ assump-
tion requires the variance of developmental rates to be linearly proportional to the
mean of developmental rates. This assumption is questionable both biologically
and experimentally. When the MPB parametrization data fromSection 6is used to
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compare the standard deviations and developmental rates predicted by the Sharpe
and DeMichele model, the linear trend is weak, at best (Fig. 12). This, and the
restrictive assumption that variance accumulates in direct proportion to develop-
ment, makes the Sharpe and DeMichele model inaccurate in variable-temperature
regimes.

The EvF model was derived by examining the relationships between the flux
and the change in population density. Using only minimal assumptions about the
distribution of developmental rates (namely, that the rates are symmetric about the
mean, with known variance), the model incorporates phenotypic variability. The
resulting model is a partial differential equation in time and age for the density of
developing individuals. This model architecture allows the user to parametrize how
median developmental rates and variability in the population about those rates vary
with temperature. This allows for a great degree of flexibility in model construction
and for variance to be accumulated in the manner that is most appropriate for a
given population. In the case of MPB this results in higher correspondence with
the laboratory data examined. The true test of these modelling approaches will be
in predicting field observations of adult emergence made in varying temperature
regimes. The results from these predictions will be presented in a future paper.
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