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In all organisms, phenotypic variability @n evolutionary stipulation. Because
the development of poikilothermic orgams d@ends directly on the temperature

of their habitat, environmental variability is also an integral factor in models of
their phenology. In this paper we present two existing phenology models, the dis-
tributed delay mdel and the Sharpe and DeMichele model, and develop an alter-
nate approach, called the Extended von Foerster model, based on the age-structured
McKendrick—von Foerster partial differential model. We compare the models the-
oretically by examining the biological assumptions made in the basic derivation of
each approach. In particular, we focus on each model’s ability to incorporate vari-
ability among individuals as well as variability in the environment. When compared
against constant temperature mountain pine belededroctonus ponderosa¢op-

kins) laboratory developmental data, the Extended von Foerster model exhibits the
highest correlation between theory and observation.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reseved.

1. INTRODUCTION

Many organisms are poikilothermic, that is, they have body temperatures directly
tied to the temperature of the environment they live in. A consequence is that,
unlike homeothermic, or warm-blooded, organisms, the speed of their metabolisms
varies with temperature. The physiological clock of poikilothermic organisms does
not advance at a rate directly proportional to the passage of ‘lab’ or ‘clock’ time,
but runs fast or slow depending entirely on how warm or cold their habitat is.
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For generalist or opportunistic poikilotherms and high-R strategists, generating
a lroad dispersion of offspring over appropriate seasons can be a success strat-
egy. In these cases, the more unpredictable the environment is the larger the pay
off to having a built-in degree of genetic variability in developmental timing, as a
bet-hedging strategyHopper 1999. For opportunists taking advantage of a vari-
ety of ephemeral resources, placing offspring at broadly distributed times of year
could maximize the chances that some offspring will have access to the necessary
resources for survival. In this context, having clocks which progress at differing
rates for all individuals is probably advantageous.

By contrast, for many specialist organisms timing and synchrony are much more
important. For successful mating and reproduction an entire population of poten-
tial mates must emerge and be at similar developmental stages simultaneously.
Similarly, the timing and development of resource-using life stages must coincide
with the appearance of ephemeral resources for successful foraging in natural envi-
ronments. Finally, most temperate, terrestrial environments are periodically lethal
to poikilothermic organisms living in them due to extremes in temperature, illu-
mination or moisture availability. Most organisms which are vulnerable to such
extremes have developed one or more stage-specific mechanisms (e.qg., estivation,
diapause, altered biochemistry, dormancy, hardened spores) to cope, but the expres-
sion of such mechanisms must be synchronized with the environmegalg and
Bentz 1999. It is astonishing that poikilothermic organisms do so well in temper-
ate habitats, given the strong selective requisite for life cycle timing and the fact
that their actual physiological clocks run at variable rates.

One of the amwers to ‘how can this work?’ is provided Bgnkinset al. (20010
andPowell et al. (2000. Poikilothermic organisms have life histories character-
ized by a progression through several developmental phases. Development through
these stages occurs at a stage-specific rate which depends directly and nonlin-
early on temperatureZg@slavskj 1988. Jenkinset al. (2001 showed hat with
two or more life phases with differing developmental rates and even small envi-
ronmental temperature variability, life cycles of populations are capable of syn-
chronization. Powell et al. (2000 showed that quiescent periods, or temperature
regimes in which development actually stops, strongly enhance the synchroniza-
tion effect. Logan and Powel{2001) applied these methodologies to explain a
historic outbreak of mountain pine beetle (MERNdroctonus ponderosadop-
kins Coleoptera:Scolytidag in white bark pine Pinus albicaulisEngelmann) in
Idaho in the early 1930s. Normally at the high altitudes (and low temperatures)
of white bark stands MPB are not capable of synchronization at one generation
per year, which seems to be necessary for an outbrsakn@n 1973 Sdranyik,

1978. However,Logan and Powell200]) showed that during the 1930s unusu-
ally warm temperatures allowed a thermally feasible, univoltine (one generation
per year) regime for MPB.

The MPB is poikilothermic and generally undergoes development in a series
of discrete phases: eggs, several larval instars, pupae and adult. In each stage,
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one may denote the fraction of the stage completed as &gg, 1], wherea = 0

at the initiation of the lifestage aral= 1 at conpletion. In the simplest model for

an organism'’s developmeatis directly related to the developmental ratd (t)).

That is, theage of completiona = 1, can also be expressed as the inverted integral
function of developmental rates from the time of initiation to the time of com-

pletion (or emergence) of the lifestage. Sim¢& (t)) is generally nonlinear and

T highly variable, in practice one numerically calculates the cumulative develop-
mental index, and then scans for the time of completion.

While this theory has the benefits of simplicity and breadth, and has been vali-
dated for the case of MPB, it does present some difficulties. The entire construction
of the theory hinges on the notion that all individuals in the population have the
same developmental rate, characterized by the median individual. This is clearly
not the case, as variability in development is ignored. When individuals are reared
at constant temperatures to parameterize rate curves, invariably there is a distribu-
tion of emergence times about the median (which is used to determine the mean rate
of development at constant temperature). From an evolutionary perspective this is
a logical result; any set of traits with such selective significance must have variabil-
ity in phenotype expressed in order for evolution to have occurred. It is therefore
necessary to develop a model which is fully cognizant of variability, both in rates
of development within the population and of temperature during development.

Accounting for phenotypic variability in varying temperatures is particularly dif-
ficult. At constant temperatures the degree of trait dispersion in a population can
be measured directly. In a fluctuating temperature environment, however, it is not
clear how much of the potential variability whidould be expressed at a given
temperature isctually accumulated as the population passes through that tem-
perature transiently. Historically two sorts of developmental models have been
proposed to integrate these variabilities. The first, a distributed delay or ‘boxcar’
model (Forrester 1961, Vansikle, 1977, views development as flows between a
series of well-mixed chambers, so that the distribution of output is conditioned on
the number of chambers and rates of flow between them (proportional to the devel-
opmental rate). Although the number of chambers can be estimated empirically
from the variance, this becomes difficult for organisms with multiple lifestages. As
a result the number of chambers is often arbitrary and a result of the researchers’
bias/experience. Consequently, true emergence variability in fluctuating tempera-
ture regimes cannot be accurately expressed.

A second, probabilistic approach was developedSiyarpeand DeMichele
(1977 and Sharpeet al. (1977. Distributions of cumulative rates are used to
explicitly determine distributions of emergence for cohorts of individuals. To
resolve the interaction between temperature fluctuation and phenotypic variability
an additional assumption must be made regarding the accumulation of variance
ove dewelopmental time. The usual, ‘same shape’ assumption is that variance
accumulates linearly with cumulative development. An unfortunate consequence
of this assumption is that when development stops for the median individual
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(e.g., when temperatures drop below a developmental threshold) it must stop for
all individuals. However, a wealth of experimental evidence indicates that, while
development may be essentially zero for many or most individuals, there are
usually some individuals still capable of progress at low temperatures. This is
not a difficulty with the Sharpe and DeMichele approgmr se for which (in
principle) variability is assumed around the full developmental curve, including
thresholds, but it is a clear difficulty with the same-shape assumption required to
apply the approach in fluctuating temperature regimes.

In this paper we develop an alternate approach, based on extending the age-
structured McKendrick—von Foerster partial differential modklcKendrick,
1926 von Foester, 1959 to account for phenotypic variability in developmental
rates. The model includes variability over the full range of the rate curve. In
particular, some individuals in a distribution can still develop even when median
developmental rates are zero. Below we derive the Extended von Foerster (EVF)
equation from minimal assumptions regarding the distribution of developmental
rates in the population and show that it presents no additional burden in computa-
tion or parameterization over the distributed delay/boxcar approach or the Sharpe
and DeMichele approach. We discuss how the three approaches compare and then
parametrize them for MPB, using lab-derived developmental d2eat¢ et al,
1991). Finally, all three models are compared to constant temperature, multiple
stage developmental data collected separately from the parameterization data
(Bentzet al., 2001).

2. EXTENDED VON FOERSTER M ODEL

2.1. Derivation. Originally derived by McKendrick (1926 and tken by von
Foerster(1959 to model cell division, the McKendrick—von Foerster equation

3(at i a,t) =g(at, p(at)) D)
atp ’)+8ap(’ =g@t, p(@,

has been applied to many different biological and ecological processes. For popu-
lationst is time, a is age normalized so that® a < 1, p(a, t) is the population
density, and the terrg(a, t, p(a, t)) gives the total gain, or negative loss, of indi-
viduals in the population per age per timeif Foester, 1959. Traditionally,
equation {) is given by

9 )
m p(a,t) + 7a p(a t) = —«kp(a,t) (2)

p0,t) = /00 b(a, t)p(a, t)da
0

wherex is the mortality rate anti(a, t) the birth rate. In this form the total gain of
individuals is equivalent to the ‘negative’ mortality, and the integral equation for
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birth is included to incorporate reproductio@gter and Teahashi 1974. There
are many papers on the McKendrick—von Foerster type of moGeltz (1999
gives a review of the many different models used in population ecology.
If development is viewed as progression through several lifestages, an alternative
form of equation 2) is needed. The partial differential equation

9 9 9°
P p@,t) +r(T()) 5a pa,t) = v(T () a2 p(a, t) 3)

is a variation of the von Foerster equation and will be called the Extended von
Foerster (EvF) equation in this paper. He(@& (t)) andv(T (t)) are interpreted as
the developmental rate and variability in development, respectively. Because there
is no reproduction when individuals are progressing through lifestages, there is no
need for the integral equation for birth shown in equati®n n addition, the total
gain of individualsg(a, t, p(a, t)) in equation B) is represented by a diffusion
term instead of the negative mortality shown in equatign (This incorporates
the concept that as a population ages, its distribution ‘diffuses’ as the variability
increases. The inclusion of the developmental rate in equak)osdgots the orig-
inal von Foerster equation for poikilotherms, for whom age and time are linked
variably through temperature.

To derive an expression forin terms of the mean and variance of developmental
rates, first assume that the developmental ratesf, the population are normally
distributed with density function

_(r=1g)?

e 22, 4)

f(r)=
2w o?

wherer is the mean developmental rate antlis the variance within the popula-
tion. Consider a characteristic frame of referemce a — rot which moves at the
rate of development of the median individual. Nawan be interpreted as the age
relative to the median individual aralas the physiological age such tleat= 0
denotes the median initiation aad= 1 denotes the median completion of a devel-
opmental stage. For an arbitrary interyl c] with z € [b, c], the clange in the
number of individuals at ages betwegandc over a time intervalAt is given by

Ng = / [p(z,t + At) — p(z, t)]dz
b

The dchange in population density can also be given in terms of the flux. The
positive fluxg, (z, t) is defined as the number of individuals crossing a particular
developmental indexz, in the positive direction. The negative flux_(z, t) is the
number crossing in the negative direction, and the totaldiiest) is the difference
between the positive and negative flux. It follows that the change in population
density is given by

1)
Nc = — = _
b = @(b) — () /b azdz
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We tun now to determining how the flux at a point relates to the density and
distribution of rates. The probability that an insect is in a small interval at age
b — @ and can progress past dgé

p(b—oz,t)/oo f(r)dr.

Individuals developing past a reference dge a time intervalAt are thog with
a devebpmental rate such that At > «. It follows that the positive flux per time
At at the reference age= b is

1 o0 o
¢ (z=Db,t) = —/ / f(r +ro)p— «, t)drda.
At Jo Je

Using a Tglor expansion forp(b — «) about the poinz = b, the positive flux
becomes

1 [e9] rAt
¢+(z=b,t):A—t/0/0 f(r+ro)

9 2 92

a9

Integrating inr and using the assumption thatis a normal distribution with stan-
dard deviatiorv gives

Nz

After finding the negative flux in a similar manner, the total population flux at the
reference agb is

Ato? 9
- —pb,t) +---.

(p+(z = b7 t) =

(P(Z = b’ t) = (P+(b’ t) - (P—(b, t)
2

o 0
= —At—— At3).
t2 azp(b,t)+(’)( t°)

It follows that the net change in population across the intdtvat] is

c 2 a2

_[_3 _ o 9 3
(p(b)—(p(C)—/b aZ(p(z,t)dz_/b At 5 97 p(z,t)dz+ O(At®). (5)

Recall that for an arbitrary interv@b, c] with z € [b, c], the change in population
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density is also given biNS = fbc[p(z, t + At) — p(z, t)]dz Taylor expanding int
results in

Cc Cc a
/ [p(z,t + At) — p(z,t)]dz:/ [p(z,t) +Atﬁ p(z,t)
b b
+ O(At?) — p(z, t)] dz

:/ Atgp(z,t)dz—l- O(At?). (6)
b ot

Equating &) and @) and simplifying gives, at leading order ifit,

[ 9 0_2 82

Since the relation must hold for arbitrary (small}, anecessary condition is that
the population satisfies

ap  o2d%p

at 2 9z2
Because = a — rot, this becomes

Sro- =20 (7)

wherer (T (t)) andv(T (t)) in equation 8) are euivalent torg ando?/2 in equa-

tion (7), respectively. The left-hand side of equatiaf) fepresents the change in
population with respect to time and age, the change over age being affected by the
mean developmental rate. The right-hand side models the diffusivity of the pop-
ulation over age on the increase of developmental variability in the population as
development proceeds. In other words, as individuals in the population age, the
variance increases or decreases proportional to the squared standard deviation of
developmental rates.

An interesting and biologically disturbing consequence of the diffusion approx-
imation (7) is that some proportion of individuals, in principle, is always aging in
thenegativedirection. This is a direct result of the initial assumption that develop-
ment rates are distributed normally with meanand finite variance. This means
that a measurable fraction of individuals in the population will have both unrealis-
tically large as well as negative rates of development. More generally, the EVF has
the same difficulty as all diffusion approximations: extremely rapid propagation
of near-infinitesimal disturbances in both positive and negative directions. These
errors are negligible, as witnessed by the near-ubiquitous application of diffusion
approximations in spatiotemporally extended systems [®lgtray (1989 for an
oveniew]. In the next section, exact solutions will be calculated, and these will
illustrate that the negatively-aging portion of the population does not unrealisti-
cally affect the distribution of predicted emergence times.
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2.2. Solution. The simpkst application of equatior8)is to describe the distri-
bution of developmental milestones (eggs hatching, larvae molting, etc.) at con-
stant temperature, given an initial population all of the same age at the same point
in time. This leads to the initial value problem

p _op _ 9%p
ot aa paz’ (®)

p(a, 0) =d(a), -0 <a<o0o,0<t.

Using thetransformatiore = a — rt andt = t, the initial value problem becomes

ap 3%p
E = Uﬁ’ (9)
p(z,0) =4(2), —00<zZ<o00,0<r.

This equation is recognizable as the heat equation, the solution of which can be
found in Logan (1997 and DuChatau and Zachman(1989 as well & many
other differential equation texts. After transforming the solution backaraadt,

we have )
(a—rt)

- O<t

i el ILEE

1
at) =
P =

the solution for drift/diffusion of an initial spot, with the role of space replaced
with age,a. For individuals terminating a life staga = 1), thepredicted pdf is

_ r\2
exp[—(l—rt)] 0<t. (20)

p@a=1t) =

vt 4pt

As shown inSection 2.1 if developmental rates are normally distributed we can
replacer andv with ro ando?/2, respectively, giving

p@a=11t) =

(1—rqt)?
exp[—Tz(;] 0<t. (11)

1
2w o?t

Thus, the population density at the end of each life stage is characterized by the
mean and variance of the developmental rates.

3. DISTRIBUTED DELAY MODEL
3.1. Derivation. The dstributed delay model was originally derived by engi-

neers to describe the flow of entities through a process, and has since been used
in a wide variety of disciplines to express delays in development, production, etc.
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(Forrester1961 Vansidkle, 1977). One of the first to formulate and apply the dis-
tributed delay model to developmental biolofanesch(1976 convated an inte-
grodifferential equation into a system of ordinary differential equations to describe
the effect of maturation in an insect populatigtignt andwilson, 1986.

When applied to populations, the distributed delay model divides the length
of an organism’s life, or lifestage, into discrete phases, or boxcanafsidkle,
1977. In theith boxcar there ar®, individuals, a fraction,; of which move on
to the next phase per time. This leads to the differential equation describing the

population change
%=M1F’|1—MF’|- (12)

If ais a continuous variable representing age such that @ < 1, B is the
population, ando is the population density, thelf (t) = p(a;, t)Aa for a boxcar
of width Aa. Hereg; is interpreted as the age in thtb boxcar such thag;, =i Aa,
P, (t) as the population in theth boxcar at time, and p(a, t) as the population
density in theith boxcar at time (Edektein-Keshet1988. Taylor expanding
p(a_1,t) and assuming that development is constant throughout the lifestage
(Ai_1 = Aj = Ai;1 = A), equation (2) becomes

ap ap  AAa?d’p

- i Add). 1
ot aaa 2 oda? + 0 (13)

Thus, for a large number of boxcars the EvF and distributed delay models can be
expected to behave similarly.

3.2. Didtributed delay solution. Given an initial input of individuals into the
first phase, or boxcar, such thata = 0,t) = §(t), Mandsch (1966 1976 and
Vansikle (1977 havwe shown that the distribution of emergence will be given by

k(akt

p@a=1t) = (k—l)!e ,

0<t, (14)

wherek = 1/Aa is the total number of phases or boxcars in the process.
If we make the assumption th&ta « 1 (or k > 1) and that {3) describes
continuous population change, the solution of the initial value problem

ap ap  AAad’p

— 4+ LAa— = — 15

ot + 0a 2 9a? (15)
p(a, 0) =é(a), —o<a<oo,0<t,

follows the solution of the initial value problen8)(in the Exended von Foerster
model. But now the fundamental solution at age- 1 andtimet is

1— AAat)?
_;} 0<t.

1
p@=1L1t) = —— exp[
V2m A Aact 20Aat

(16)
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Population Distribution
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Figure 1. Population distribution estimated by the distributed delay model for individuals
at agea = 1, where(x, Aa) = (15,0.01), (7.5, 0.02), and(5, 0.03). Choices for(x, Aa)

were made to maintain a constant median development time for all profiles. Although each
distribution has the same median, the variance is clearly dependent on these choices.

and is dependent on the number of phases, or boxcaend Aa can be easily
estimated from the mean development ratef the empirical data as there are an
infinite number of solutiongx, Aa) that satisfy the equation, = AAa. But, as
shown inFig. 1, because the variability in the distributed delay model also varies
with Aa (62 = LAa?), there are an infinite number of distributions with identical
mean development times and different variances.

4. SHARPE AND DEMICHELE MODEL

4.1. Derivation. Sharpeet al. (1977 derived another model of the reaction
kinetics for insect development based on several assumptions about the underlying
developmental control enzymes. These assumption are: (a) a single control
enzyme regulates development and hence the developmental rate of the organism
(Sharpeand DeMichele1977); (b) the rate constant of active enzymes is temper-
ature dependent and when multiplied by the concentration of active enzymes is
proportional to the developmental rateh@rpeand DeMichele1977); (c) the con-

trol enzyme can exist in an active state and two temperature dependent inactivation
states $harpeand DeMichele1977); (d) the control enzyme has a symmetric dis-
tribution about some mean concentrati@nérpeet al,, 1977). In reference to the
derivation of reaction kinetics for insect development3iyarpeand DeMichele
(1977, the model will be called the Sharpe and DeMichele model in this paper.



Predicting Developmental Milestones 1831

Given he pdf of ratesf(r) for A < r < B where A and B are the mini-
mum and maximum delopmental rates, respectively, the cdf of rate is) =
fl\ f(s)ds = ProdR < r]. In addtion, the cdf of emergence times can be given

by
G(t) = Pro T < t]. (17)

F(r) gives the probability thaR, the developmental rate required to complete

a lifestage, is less than or equal to the developmentalmatnd G(t) gives the
probability thatT, thetime required to complete a lifestage, is less than or equal
to timet. If agea is defined such that @ a < 1, development is completed at age

a = 1 and the product of developmental rate and time is equal to(ane- 1). It
follows that the developmental rate is inversely proportional to the emergence time
and equationX(7) can be written as

G(t) =Prof1/R < t]
= ProfR > 1/t]
=ProdR>r].

By definition of the cdf, this becomes

r=1/t
G(t)=1—/ f(s)ds
A

=1-F()
t
= g(wdu.
1/B
Becausef (r)dr = f (1/t)dt/t?, it follows that

gt) =1/t2f(1/t) for1l/B<t <1/A
=r2f(r) for A<r < B.

Thus, if any of the following four equations are given, the remaining three can be
found:

f (r) = pdf of rates forA <r < B, (18)
gt)y=r2f(r) forl/B<t<1/A, (19)
HU:/fUMn (20)
A
t
G =1-F(@) = / g(wdu. (22)
1/B
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For the purposes of comparison with the other two models, if we assume that the
developmental rates are normally distributed such that

1 7(r—ro)2
fU)zme 22, (22)
the pdf of emergence times becomes
1 o
W e T )

Thenonlinear least-squares fit of the data from observed emergence gives the mean
and standard deviation of development. This information completely describes
equations 18)—(21), which in turn describes development at constant temperature.

5. MobDeEL COMPARISON

At constant temperature, the distributed delay model is essentially a numerical
approximation of the von Foerster equation by the method of lines. An important
difference is that the number of phases of cohorts in each developmental stage must
be estimated from the data for the distributed delay model. In other wamlss
an arbitrary interval length that must be chosen so that the texmin equation
(13) of the distributed delay model represents the probability that an individual
will move to the next phase. In the EvF model, the probability of development is
simply given by the developmental ratewhich can be approximated as the mean
developmental ratg,.

At constant temperature, with a known target population variance, it is possible
to chooser and Aa to generate the correct statistical behavior in the output distri-
bution. The relationship between the EvF model and the distributed delay model
can also be used to estimat@. That is, if we assume thata is small,

However, this implies that the developmental rate and variability depend on the
size of each phase or cohort. Two types of distributed delay model were developed
to address this problem: the linear chain modéhdsch 1976 198Q Vansidle,
1977, MacDonald 1978 and the modified Leslie matrix mode$lobodkin 1953
Wernerand Caswell1977). But these models only succeed in establishing a range
of values ofAa for which each model is best suitellént andwilson, 1986.

The Sharpe rd DeMichele model takes a different approach to finding the
developmental distribution of a population. Like the EvF model, the Sharpe and
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Figure 2. Distributbns of emergence times estimated by the EvF model (solid) and the
Sharpeand DeMichele model (dashed) for individuals at age- 1 with ro = 0.15 and

o = 0.04. The disribution estimated by the distributed delay model (open circles) is
equivalent tahe EvF distribution withh = 14.0625 andAa = 0.01065.

DeMichele model assumes that the developmental rates follow a particular distri-
bution. But instead of using the assumption to derive a partial differential equation
based on flux and population change, the Sharpe and DeMichele model uses the
pdf and cdf of rates as well as the pdf and cdf of emergence times to describe
development at constant temperatures.

Assuming that the developmental rates are normally distributed, the pdf of emer-
gence times for the Sharpe and DeMichele model is given by equaBpnWhen
compared to equatiori{), the fundamental solution of the EvF equation, we can
see that although both models share the same mean developmentgltreteda-
tionship between the observed variance and the predicted vadarisadifferent
for parameter valuey = 0.15 ando = 0.04 (Fig. 2. Now we must ask if there
exigs an appropriate combination of parameter values for which the EvF model
and Sharpe and DeMichele model predict the same emergence distribution.

Supposing that the pdf of emergence times in the Sharpe and DeMichele model is

equation {1) from the EvF model, it follows that the distribution of developmental
rates in the Sharpe and DeMichele model is

1 1 1 (=g
fry==p(Ls)=———e 2z . 24
(r) r2p<,r) > * (24)

Equation @4) is dearly not the normal distribution, which was used in the deriva-
tion of the EvVF model irBection 2.1 In ather words, emergence distributions for
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Figure 3. Distribution®f developmental rates estimated by the EvF model (normal distri-
bution, solid) and the Sharpe and DeMichele model (dashed) by assuming that both models
share the same emergence distribution for individuals ataagel with ro = 0.15 and

o = 0.04. The emergence distributions are equivalent only if the distributions of develop-
mental rates are different.

the Sharpe and DeMichele model and the EvF model imply that the distribution
of developmental rates for each model is differerig( 3). Like the distribu-

tion of emergence times iRig. 2 both models share the same mean develop-
mental rde but the relationship between the observed and predicted variances is
different.

The planation for this dichotomy between the Sharpe and DeMichele model
and EvF model stems from the original derivation. The emergence distribution of
the Sharpe and DeMichele modgl) is intrinsically dependent on the distribution
of developmental rate$(r), asg(t) = r?f(r). In contast, the basic structure of
the EvF model, and hence the emergence distribypi@= 1, t), is not affected
by the distribution of developmental rates. Only the center and spread of the emer-
gence distribution for the EvF model will change with varying developmental rate
distributions, while the center, spread, and shape of the Sharpe and DeMichele
emergence distribution will all change significantly.

6. PARAMETRIZATION FOR MPB
6.1. Methods. To test the accuracy of the models, lab-derived MPB develop-

mentaldata were analyzedéntz et al, 1997). Providing emergence times at
specific temperatures, the data were obtained through a laboratory experiment in
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which a sample of beetles at each lifestage were held at a constant temperature and
their time of emergence recordddogan and AmmarL986.

Data were analyzed for six different life stages: egg, instar 1, instar 2, instar 3,
instar 4, and pupae. The term instar denotes a lifestage between two successive
moalts. Samples of insects were held at several different constant temperatures,
but mortality reduced the number of different temperatures at which successive
lifestages were observed. Consequently, beetles in the egg stage were reared at
8, 10, 12.5, 15, 17.5, 20, 22.5, 25, and®°C; instar 1 at 5, 10, 15, 20, 25, and
27.5°C; instar 2 at 10, 15, 20, 25, and BPC; instar 3 at 15, 20, 25, and &°C;
and both instar 4 and pupae at 15, 20, anéi@%_ogan and Ammario86 Bentz
et al., 1997).

Using the Nelder—Mead simplex search algorithm and the mathematical pro-
gramming package (MrLAB), values of the developmental parameters were
chosen that minimized the difference, or error, between the normalized cumulative
frequency and the cumulative distribution function predicted by the respective
model Heath 1997. Three different functions were used to quantify the error:
the absolute value of the difference, the sum of squares, and the log of the absolute
difference plus one. This served to investigate the stability of the estimates,
eradicate sensitivity to variable data, and cross-check the error functions. The
search was initialized by the mean developmental rate and the variance of the data
divided by two. The difference between the number of observed emerged beetles
and the number predicted by the models was computed for each new choice of
developmental parameters.

After running the program repeatedly and analyzing the results, we found that the
absolute value and log of the difference usually gave equivalent parameter values,
but theparameters estimated using the sum of squares were sometimes drastically
different. This was probably caused by the sum of squares’ overadequate represen-
tation of errors greater than one. In this paper, results using the absolute value of
the difference will be presented.

Edimates of the developmental rateand variabilityv in the EvF model were
made for each lifestage and temperature by fitting the data from observed emer-
gence to the predicted cumulative population density, the integral of equa@pn (
Similarly, the mean and variabilityy = 2/2) of development for the Sharpe and
DeMichele model were found by fitting the data from observed emergence to equa-
tion (21), the cdf of emergence times as predicted by the Sharpe and DeMichele
model. The parameter values found for both models at each lifestage and temper-
ature are given iable 1

6.2. Comparison of results. Although theR? valuesfor the EvF model and the
Sharpeand DeMichele model are equivalent, the estimated ‘best fit' parameter
values difer in varying degreesTéble 1. This is particularly evident in the vari-
ability parameter and re-emphasizes the conclusions draBedtion 5regarding

the differences between the models.
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Table 1. Paameters estimated by minimizing the absolute value of the error between pre-
dicted and observed emergence and their respeRfvealues. Emegerce was predicted
by the EvF model usingg, vg and R%, and the &arpe and DeMichele model using,

vs, andR2.
Egg Instar 1 Instar 2 nistar 3 Instar 4 Pupae
5°C n 5
re 0.01025774
rs 0.99999983
VE 0.00000097
Vs 0.00089318
RZ 0.68
RS 0.81
8°C n 11

re  0.02924079
rs 0.02878648
ve 0.00019728
vg 0.00000616
RZ 0.99
RZ 0.99

10°C n 7 15 11
re 0.03498788 0.06811402 0.02663810
rs 0.03476382 0.06549600 0.00003548
ve 0.00000241 0.00133039 0.00999886
vs 0.00000190 0.00008633 0.00068604

RZ 0.83 0.99 0.77
RZ 0.98 0.99 0.82
125°Cn 9

re  0.05096118
rs 0.04045115
ve 0.00036718
vg 0.00001699
RZ 0.98
RZ 0.99

15°C n 6 10 6 4 2 2
re 0.07858796 0.14139784 0.13457354 0.07974721 0.04411733 0.04210553
rs 0.07767692 0.12773795 0.11663893 0.99988291 0.04411733 0.04210553
ve 0.00044781 0.00999144 0.00999655 0.00020856 0.00000005 0.00000004
vs 0.00004071 0.00126655 0.00176600 0.00758388 0.00000005 0.00000004

RZE 0.99 0.98 0.96 0 0.99 0.99
Ré 0.99 0.98 0.96 0 0.99 0.99
175°C n 4

rs 0.11814434
re 0.11811877
rs 0.11814434
vE 0.00001804
vg 0.00000414
RZ 0.85

R 0.85
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Table 1. tontinued.
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Egg Instar 1 Instar 2 nistar 3 Instar 4 Pupae
20°C n 5 5 3 4 13 6
re 0.14512152 0.37719247 0.30373741 0.17909991 0.09878847 0.16853505
rs 0.14531136 0.31964464 0.30954991 0.56831589 0.00005248 0.16237065
ve  0.00047772 0.00077569 0.00405885 0.00997423 0.00999432 0.00257269
vs 0.00006777 0.00348248 0.00311232 0.00999753 0.00415625 0.00045359
RZ 0.99 0.95 0.79 0.80 0.95 0.98
RZ 0.99 0.94 0.79 0.80 0.96 0.98
225°C n 2
re  0.16428571
rs 0.16428571
v 0.00002685
vs 0.00002685
RZ —
RZ —
25°C n 3 6 8 9 12 7
re 0.18303779 0.37508458 0.24644016 0.14330973 0.13849435 0.18614447
rs 0.17922628 0.33908673 0.23024597 0.05299251 0.00002384 0.09110462
ve  0.00032212 0.00998743 0.00999831 0.00998595 0.00999684 0.00176397
vs 0.0003068 0.00999209 0.00312535 0.00999233 0.00886165 0.00554327
RZ 0.99 0.60 0.99 0.82 0.82 0.85
RZ 0.99 0.64 0.99 0.94 0.93 0.85
275°C n 3 10 » 6
re 0.18713500 0.25549177 0.14698513 0.05292529
rs 0.20450056 0.24693988 0.11216188 0.00003604
vE  0.00014509 0.00603980 0.00999556 0.00292613
vs 0.00013361 0.00191146 0.00267466 0.00186298
RZ 0.78 0.98 0.99 0.92
RZ 0.78 0.98 0.99 0.92

Figs. 49 use information garnered from the parametrization. Although the
parameters were estimated at several temperatures in all lifestages, it is important
to find the developmental parameters for temperatures not studied. There are two
standard ways to accomplish this: by assuming that the parameters are related
and follow a particular distribution, or that one or more of the parameters remains
constant over the lifestage. For the Sharpe and DeMichele model, the first approach
was used. Linear regression of the estimated standard dewatiarthe estimated
developmental rate provided the slope of the lineoc = cr for each lifestage.
Compuing the mean developmental ratgfrom the data and then using and
c to approximate the standard deviation emergene could be estimated for all
temperatures. The linear relationship between the estimated standard deviation
and the mean developmental rages shown inFig. 12, whereit is clear that the
linear association is weak. Alternatively, the EvF model used constant values. The
mean of the variability parameter estimated by the EvF model was taken over
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Figure 4. Observed cumulative frequency of hatched mountain pine beetle eggs and fre-
guencies predicted by the EVF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be folatuer2

all temperatures. This value was then used, as well as the mean developmental rate
ro, in equation @O) to predict emergence for each lifestage and temperature.

On exanmning Table 2 andFigs. 4-9, we can see that the EVF model performs
as well as, if not better than, the Sharpe and DeMichele model. This is somewhat
surprising given that the EvF model uses constant variabilftyr all temperatures
while the variability in the Sharpe and DeMichele model changes dynamically with
temperature.

7. VALIDATION
Constant temperature, multiple stage developmental data for the MPB was used

to compare the performance of the distributed delay, Sharpe and DeMichele, and
EvF models. MPB-infested sections of lodgepole pine were held a€zind alult
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Figure 5. Observed cumulative frequency of molted mountain pine beetle instar 1 and fre-

quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be foladuler2

brood emergence monitored every other day, resulting in an observed distribution
of total emergence timeéBgntzet al., 2007).

Devebpmental ratesy, for each lifestage were approximated using meth-
ods referred to in.ogan and Ammar{1986, Bentz et al. (1991), and Jenkins
et al. (200)). The variability, v, used in the EvVF model was estimated from the
parametrization data iection 6 This was done by averaging the variability
for each lifestage over temperature, since no trend was apparent. For the Sharpe
and DeMichele model, the slopeof the lineoc = cr (seeSection 6.2 was
found for each lifestage by linear regression on the observed parametrization
data. These slopes were then used to find the standard deviation of the validation
data. To approximate the optimal number of boxcdes= 1/Aa) in the dis-
tributed delay model, the accumulated variance estimated by the EvF model was
compared to the accumulated variance estimated by the distributed delay model.
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Figure 6. Observed cumulative frequency of molted mountain pine beetle instar 2 and fre-

quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be folaider2

That is,
V1 V2 Vg
vlt1+])2t2+...+])8t8:_+_+...+_
rr. r g
MA8%  A,A8@2 rgAa?
~ + 4+ .+
2k1Aa 2A2Aa 2A8Aa

= 4Aa.

For mountain pine beetles developing at a constarntC21he opimal number of
boxcars was approximated s 22 (Aa ~ 0.04445.

The olserved and predicted cumulative emergence of adult MPB atagd
shown inFig. 10. The EvF nodel with constant variance is superior to the Sharpe
and DeMichele model using the same-shape assumption for variance?wil
ues of 0.985 and 0.879, respectively. Although the distributed delay model with
k = 22 boxcars might be expected to be very similar to the EvF model, the EvF
model exhibits a higher degree of accuracy with= 0.985 whiler? = 0.946 for
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Figure 7. Observed cumulative frequency of molted mountain pine beetle instar 3 and fre-

guencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be folatuer2

the distributed delay model. This is due, in part, to the fact that in the distributed
delay model, the variance and developmental rate for each lifestage depaw on
which wasestimated from the predicted cumulative variance in the EvF model.
Thus, the distributed delay model is constrainedNayand is less descriptive than
the EVF model.

8. DISCUSSION

While the EVF apprach provided a clearly superior fit to data, even the worst of
the three models captured approximately 95% of the variability. To more clearly
accentuate the pros and cons of the different approaches, we must consider their
behavior in variable-temperature regimes. This will aid in model comparison and
selection and give valuable insight for future research.

As the EvF model incorporates environmental and phenological variability into
its basic structure, expanding the model to account for variable temperatures is
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Figure 8. Observed cumulative frequency of molted mountain pine beetle instar 4 and fre-

quencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be folaider2

reasonably straightforward. The population distribution function of individuals
completing lifestagg at timet and in a variable-temperature environment is given

by
1

VAt —1)3

2
(1 — r,-[T(s)]ds)
x exp| — I dr, 0<t. (25

t
pja=11) =/ pj-1(@a=11)
0

Thisfollows from replacing thé initial condition in equation&) with an appro-
priate initial distribution (the distribution of individuals from the previous lifestage)
and using the convolution theorem in time. Thus, using only minimal assumptions
about the distribution of developmental rates (Seetions land?2.l), the EvF
model describes the complexity of development in a variable-temperature environ-
ment.

The dstributed delay model is more difficult to connect with constant-
temperature parameters in a variable-temperature environment, primarily because
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Figure 9. Observed cumulative frequency of molted mountain pine beetle pupae and fre-
guencies predicted by the EvF model and the Sharpe and DeMichele model. Both models
occasionally make the same predictions, in which case there appears to be only one line,
instead of two. The parameters used for each temperature can be folatner2

it is virtually impossible to determine the number of boxcars or phases for each
temperature and lifestage. Based on the idea that development is akin to the flow
of entities (or individuals) through a series of phases or boxcars, the output of the
distributed delay model is dependent on the rates of flow= AAa) between

the phases and the number of phades= 1/Aa) in the process. To achieve
some target variability as rates change with temperature, we must clgmge
dynamically, an unpalatable and difficult task requiring ongoing structural changes
in the model.

To use he Sharpe and DeMichele model in variable-temperature regimes, two
assumptions must be made: (1) the integral function of the pdf describing develop-
ment atdifferent constant temperatures gives the development at variable temper-
atures; (2) the mean and variance of the developmental rates are linearly propor-
tional. The second assumption implies thais functionally dependent ory and
the pdf of the developmental rates is univariate.

If it is assumed that development is cumulative in a variable-temperature envi-
ronment, then the development completed in the lifestage between time time
t and at temperatur€ is

t
/ r[T(s)]ds
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Table 2. Rrameters used to gener&iigs. 4-9. The mean developmental rate computed
from existing data was esl in both the EvF model with developmental rageand the
Sharpeand DeMichele model with developmental rage(rg = rg). The canputation of
variability vg, vg is descrbed inSection 6.2

Egg Instar 1 Instar 2 nistar 3 Instar 4 Pupae

5°C

8°C

10°C

125°C

15°C

17.5°C

5
0.00985729
0.00985729
0.00463262
0.04148186
0.50

0.61

11
0.03007893
0.03007893
0.00022272
0.00000291
0.96

0.93

7 15 11

0.03476382 0.06493120 0.02498197
0.03476382 0.06493120 0.02498197
0.00022272 0.00463262 0.00880963
0.00000438 0.00017795 0.0000000001
0.92 0.90 0.75

0.97 0.98 —

9
0.05034782
0.05034782
0.00022272
0.00000894
0.98

0.97

6 10 6 4
0.07715618 0.12225730 0.12573322
0.07715618 0.12225730 0.12573322
0.00022272 0.00463262 0.00880963
0.00002119 0.00067686 0.00123547

0.97 0.95 0.95 —0.49 0.99 0.99

0.98 0.97 0.96 0

4
0.11823743
0.11823743
0.00022272
0.00004901
0.83

0.83

2 2
0.06933593 0.04411733
0.06933593 0.04411733
0.00577372 0.00666374
0.04147216 0.02514204

0.04210553
0.04210553
0.00144556
0.00018678

0.99 0.99
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Table 2. tontinued.

Egg Instar 1 Instar 2 nistar 3 Instar 4 Pupae

20°C

225°Cn
re
rs

25°C

275°C

5 5 3 4
0.13614831 0.33949560 0.23958333
0.13614831 0.33949560 0.23958333
0.00022272 0.00463262 0.00880963
0.00007415 0.00423831 0.00870177
0.95 0.91 0.68

0.99 0.96 0.77

2

0.16428571
0.16428571
0.00022272
0.00009477

13
0.11382502
0.11382502
0.00577372
0.01339794
0.65

0.80

6
0.09632276
0.09632276
0.00666374
0.00000004
0.94

0.16589709
0.16589709
0.00144556
0.00277755
0.97
0.96

3 6 8 9
0.18214286 0.37112735 0.25568906
0.18214286 0.37112735 0.25568906
0.00022272 0.00463262 0.00880963
0.00011280 0.00476958 0.00481427
0.99 0.50 0.98

0.98 0.58 0.97 —2.40

3 10 12 6
0.17467532 0.28278123 0.14815499
0.17467532 0.28278123 0.14815499
0.00022272 0.00463262 0.00880963
0.00014685 0.00252954 0.00114245
0.13 0.98 0.98

0.78 0.98 0.85

12
0.17717066
0.17717066
0.00577372
0.00011659
0.73

7
0.13576822
0.13576822
0.00666374
0.000000007
0.77

0.22112970
0.22112970
0.00144556
0.00087443
0.41

—1.08

0.07206198

0.07206198

0.00577372

0.00000000005
0.80

Assumption (2) expands this concept into a full population distribut®itafpe
and DeMichele1977. That is, if f (r) has meamg and standard deviatiot for
each temperatur€, theno = crg andc can be estimated by linear regressiomrof
onrg. Nowthe distribution of emergence times for individuals completing lifestage
j attimet under varying temperatures is

1
(t — r)\/chj [T (9)1ds

t
pi(t) = /0 pi_1(t)

) (1- /i, [T(s)]ds)2

x exp .
2c2 (f: r[T (s)]ds)

dr, 0<t.

(26)
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Figure 10. Observed cumulative emergence of mountain pine beetle adults and emergence
predicted by the disibuted delay (witkk = 22), Sharpe and DeMichele and EvF models.
Developmental rates were predicted using the rate curves describedenkinset al.

(200)). Variability for the EvF modewas found by averaging over temperature for each
lifestage[v = (0.0002 0.0046 0.0088 0.0058 0.0067, 0.0014]. Theslopec of theline

o = cr was found using parameteritian data and was used to estimate the variability in

the Sharpersd DeMichele modelc = (0.0838 0.1869 0.4262 0.288Q 5.0828 0.4590].

From a omputational perspective, the EvF approa2h) hassimilar computa-
tional complexity to the Sharpe and DeMichele same-shape appra@chBoth
involve convolutions of emergence distributions with probability kernels involving
net development occurring between timesndt, resulting inO(n?) computations
required forn temporal increments. Consequently, the EvVF approach is no more
costly than the widely used Sharpe and DeMichele model. It is more mechanisti-
cally derived and is not hampered by the necessity of a same-shape assumption on
the relationship between accumulation of development and variance.

In real-world environments with high thermal variability the differences between
the EVF and same-shape approaches become apparent, as does the need to include
the effect of phenotypic variance in phenology models. To illustrate the cumulative
effect of these differing assumptions in a variable temperature environment, equa-
tions 25) and @6) were apjied stage-wise to MPB developing in the Sawtooth
National Recreation Area of central Idaho. An individual tree was baited with
a pheromone lure and the number and timing of adult beetles attacking the tree
during the summer of 2001 recorded and used to initialize the model. Phloem tem-
peratures were recorded hourly for an entire developmental period. Results of both
EvF, same-shape, and a median-individual model with no phenotypic variance are
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Cumulative Summer Emergence, SNRA, 2002
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Figure 11. Observed and predicted cumulative emergence of MPB in the Sawtooth
National Recreation Area. EVF (solid), saistiepe Sharpe and DeMichele (dots), and
median-individual models (dash—dots) were initialized using the recorded number and
timing of adult beetles attacking a pheromone baited tree during the summer of 2001.
PHoem temperatures were recorded hourly for an entire developmental period and emer-
gence observed during the summer of 2002.

plotted inFig. 11in cumulative form, with actual cumulative observed emergence
plotted for reference.

All three models are parametrized with laboratory data, as described in previous
sections, not ‘fit’ to the observations. Nonetheless, the correspondence between the
prediction of the EVF model and the data is still excellent, witm%af 0.93. The
same-shape Sharpe and DeMichele model exhibits a corresponderice 659.

The reed to include variance is also illustrated; a median-individual model (all
variances zero) is also plotted, and givesrdrof 0.84. This preliminary analy-

sis indicates the need to include realistic variance in developmental timing and the
superiority of the EVF approach in a variable temperature environment. More com-
plete discussion of the field data presented here and the computational application
of the EVF model in variable temperature environments will be the subject of a
future paper.

9. CONCLUSION
This paper discusses three developmental models: the Extended von Foer-

ster (EvF) model, the distributed delay or boxcar model, and the Sharpe and
DeMichele model. Each model has positive and negative qualities in constant and
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Figure 12. Estimated standard deviations vs. estimated developmental rates for each
lif estage. Parameters were found using the Sharpe and DeMichele model and show only a

weak linear association.

variable-temperature environments. The distributed delay model, with its compart-
mentalized structure, is a good way to initially envision development, and is simple
to implement. Clear and straightforward, the model is easy to understand and
parametrize at constant temperatures. But the underlying idea that an organism’s
lifestages can be divided into phases or boxcars is flawed. Choasingr the
length of each boxcar, becomes difficult when examining development over all
lifestages at constant temperature and virtually impossible at variable temperatures.
Consequently, researchers often choose a conatangither empirically or exper-
imentally, instead of changinga dynamically with temperature. As a result, the
accumulation of variability in fluctuating temperature regimes is largely inaccurate.
The Sharpe and DeMichele model uses the distribution of developmental rates
to find the distribution of emergence times. At constant temperatures, this prob-
abilistic methodology is relatively simple to implement and parametrize. How-
ewer, at variable temperatures additional assumptions must be made to estimate
the full distribution of emergence times. In particular, the ‘same-shape’ assump-
tion requires the variance of developmental rates to be linearly proportional to the
mean of developmental rates. This assumption is questionable both biologically
and experimentally. When the MPB parametrization data feation 6is used to
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compare the standard deviations and developmental rates predicted by the Sharpe
and DeMichele model, the linear trend is weak, at bE&j.(12). This, and the
restrictive assumption that variance accumulates in direct proportion to develop-
ment, makes the Sharpe and DeMichele model inaccurate in variable-temperature
regimes.

The EvF nodel was derived by examining the relationships between the flux
and the change in population density. Using only minimal assumptions about the
distribution of developmental rates (namely, that the rates are symmetric about the
mean, with known variance), the model incorporates phenotypic variability. The
resulting model is a partial differential equation in time and age for the density of
developing individuals. This model architecture allows the user to parametrize how
median developmental rates and variability in the population about those rates vary
with temperature. This allows for a great degree of flexibility in model construction
and for variance to be accumulated in the manner that is most appropriate for a
given population. In the case of MPB this results in higher correspondence with
the laboratory data examined. The true test of these modelling approaches will be
in predicting field observations of adult emergence made in varying temperature
regimes. The results from these predictions will be presented in a future paper.
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