US Forest Service Bark Beetle Research in the Western United States: Looking Toward the Future

Bark beetles cause extensive tree mortality in coniferous forests of western North America and play an important role in the disturbance ecology of these ecosystems. Recently, elevated populations of bark beetles have been observed in all conifer forest types across the western United States. This has heightened public awareness of the issue and triggered legislation for increased funding for state and federal agencies to address issues associated with bark beetle outbreaks. Recently, US Forest Service, Research and Development entomologists from the western research stations met with US Forest Service, State and Private Forestry, Forest Health Protection entomologists, our primary stakeholder, to identify bark beetle research priorities. These include vegetation management; ecological, economic, and social consequences of outbreaks; fire and bark beetle interactions; effects of climate change on bark beetle populations; and chemical ecology.

Keywords: bark beetles, western forest insects

Native bark beetles are important disturbance agents in western coniferous forests. Population levels of a number of species oscillate periodically, often reaching high densities and causing tree mortality on a landscape level when favorable stand and climatic conditions coincide. Bark beetles influence forest ecosystem structure and function by regulating certain aspects of primary production; nutrient cycling; ecological succession; and size, distribution, and abundance of trees (Romme et al. 1986). These mortality events are part of the ecology of western forests and positively influence many ecological processes, but the economic and social implications can also be significant.

Recently, elevated bark beetle populations have caused extensive tree mortality across the western United States in forest types ranging from pinyon-juniper woodlands to spruce-fir forests (US Forest Service 2005). In addition to the challenges presented by these disturbance agents to forest managers, public awareness of these outbreaks is high. The media regularly feature dramatic occurrences and effects of bark beetle–caused tree mortality in newspapers, television, and radio programs. Legislative

Received December 5, 2007; accepted June 3, 2008.

Jose F. Negrón (jnegrón@fs.fed.us) is research entomologist, US Forest Service, Rocky Mountain Research Station, 240 West Prospect, Fort Collins, CO 80525. Barbara J. Bentz (bbentz@fs.fed.us) is research entomologist, US Forest Service, Rocky Mountain Research Station, 860 North 1200 East Logan, UT 84321. Christopher J. Fettig (cfettig@fs.fed.us) is principal research entomologist, US Forest Service, Pacific Southwest Research Station, 1107 Kennedy Place, Suite 8, Davis, CA 95616. Nancy Gillette (ngillette@fs.fed.us) is research entomologist, US Forest Service, Pacific Southwest Research Station, 800 Buchanan Street, Albany, CA 94710-0011. E. Matthew Hansen (matthansen@fs.fed.us) is entomologist, US Forest Service, Rocky Mountain Research Station, 860 North 1200 East Logan, UT 84321. Jane L. Hayes (jhayes@fs.fed.us) is research biological scientist, US Forest Service, Pacific Northwest Research Station, Forestry and Range Sciences Laboratory, 1401 Gekeler Lane, LaGrande, OR 97850. Rick G. Kelsey (rkelsey@fs.fed.us) is research forester, US Forest Service, Pacific Northwest Research Station,
bills have been introduced to the US Congress and state legislatures seeking funding and authorities to address the issue. These legislative bills follow the National Fire Plan and Healthy Forests Restoration Act of 2003 (US Public Law 108-148), which addressed private industry and public concerns about increased tree mortality due to fire and insect infestation in western forests.

For many years, US Forest Service research scientists in the West have studied the biology, ecology, and management of the principal species of tree-killing bark beetles. Some of the important species include the Douglas-fir beetle, *Dendroctonus pseudotsugae*, mountain pine beetle, *Dendroctonus ponderosae*, spruce beetle, *Dendroctonus rufipennis*, western pine beetle, *Dendroctonus brevicomis*, fir engraver, *Scolytus ventralis*, and pine engravers, *Ips* spp. Bark beetle research reflected the historical emphasis placed on western timber resources. Today, changes in societal values, global trading practices, and increased awareness of the importance of disturbances in the functioning of forest ecosystems present previously unexplored questions. Among these, these include the impacts on recreation, visual corridors, and high value areas such as ski areas; impacts to threatened, endangered, or sensitive wildlife species; the introduction of invasive species; and potential response of insects and their coniferous hosts to climate change.

To adequately address the present and future concerns of land managers and the general public, and to continue to explore basic ecological processes associated with bark beetles, the scientific community is compelled to examine research priorities. US Forest Service Research and Development (R&D) entomologists from the western United States (US Forest Service 2008b) [1] met in 2007 with entomologists from US Forest Service, State and Private Forestry, Forest Health Protection (US Forest Service 2008a) to discuss and identify research priorities on bark beetles. FHP specialists are responsible for technical assistance on forest insect and disease issues on all federal lands and work closely with state forest health cooperators, so feedback from FHP specialists reflected an efficient means of gathering stakeholder input. It should be noted that these research priorities were the primary issues identified by the group with stakeholder input and not a comprehensive list. In addition, stakeholder input did not include priorities that scientists with universities and state research agencies may consider important.

(continued from page 325)

Figure 1. Impact of vegetation management on bark beetle infestations. Thinned lodgepole pine stand, Arapaho-Roosevelt National Forest, Colorado. Studies have shown that silvicultural treatments can reduce stand susceptibility to bark beetle infestations. However, there is a need to conduct studies at large spatial and temporal scales. Furthermore, data are lacking for some important cover types. (Photo courtesy of José Negrón, US Forest Service.)

Bark Beetle Research Priorities, US Forest Service, Research and Development

Although much of the forest science community has been operating in resource-challenging times, we also find ourselves at the threshold of new and exciting avenues of research. In this section we discuss the primary research areas identified in conjunction with FHP, our primary stakeholder group.

Vegetation Management. In general, tree and stand conditions conducive to outbreaks of many bark beetles have been identified and thinning has been advocated as a preventive strategy to reduce the amount of...
occurrence of bark beetle–caused tree mortality (Fettig et al. 2007). However, most studies on forest susceptibility to bark beetles and vegetation management were conducted on small plots, short temporal scales, even-aged stands, and few forest types such as lodgepole and ponderosa pine (Figure 1). We need to transfer this knowledge and expand our research to large landscapes, longer time frames, and uneven-aged stands, where land managers are increasingly practicing management, and examine understudied forest types (Fettig et al. 2007).

We have just begun to understand the effects of thinning on host finding and colonization by bark beetles at the tree and stand level (Fettig et al. 2007). Bark beetles are affected by spatial patterns of habitat patches within landscapes (Coulson et al. 1999), but how these processes influence the efficacy of vegetation management practices is unknown. Working in this area will provide managers with tools as they consider landscape-level processes in their management strategies.

Exploring the mechanisms of host susceptibility by which thinning and other disturbance agents such as drought, disease, and defoliation influence tree physiology, especially the production of stress-induced volatiles such as ethanol (Kelsey 2001) and tree responses to water deficit, will strengthen the scientific basis for the application of vegetation management treatments to restore, maintain, and enhance ecosystem integrity and resiliency.

Fuel reduction projects, particularly in the wildland–urban interface, are being conducted using mechanical treatments. Fettig et al. (2006) showed that chipping slash in ponderosa pine stands resulted in a significant increase in bark beetle attacks on residual trees although no increases in tree mortality were observed in the short term. The effects of other treatments, such as mastication or delayed chipping of tree biomass or both, need to be explored if these fuel reduction practices are to be successful in leaving vigorous residual trees.

Ecological, Economic, and Social Consequences of Bark Beetle Outbreaks. Because disturbances are important to the function of forest ecosystems, bark beetle outbreaks are ecologically beneficial. From the socioeconomic perspective, however, bark beetles are often considered detrimental, especially for economies supported by wood utilization, tourism, and outdoor recreation (Figure 2, A and B). Negative economic impacts of bark beetle–caused tree mortality have often been estimated in terms of timber production, but the beneficial ecological roles of this disturbance have received less attention. Bark beetles play important roles in forest stand structure and net primary production (Romme et al. 1986), biogeochemical and hydrologic cycling (Edmonds and Eglitis 1989), and species diversity (Martin et al. 2006) among other processes. These topics have only been briefly addressed, but their consideration is essential for the successful delivery of ecosystem services.

Disturbance scale must be considered, because there are different ecological outcomes for stand-replacing versus canopy gap–producing events (Lundquist and Negro´n 2000). At the landscape scale, insect infestations create a mosaic of forest patches of various ages, densities, species composition, and successional stages (Schowalter 2006). Spatial metrics have been developed to quantify landscape patterns (Gustafson 1998), but these need to be correlated to bark beetle activity. Geospatial analyses can be used to map relationships among ecosystem components and quantify the ecological roles of bark beetles.

Timber production metrics or single resource variables are inappropriate for characterizing nontimber impacts of bark beetles on forested ecosystems (Kline 2007). Methods developed to assess multiple variables offer alternatives for characterizing impacts affecting a variety of objectives (Lundquist and Beatty 1999). This work will result in
adequate valuation for complex systems associated with bark beetle outbreaks.

After outbreaks of spruce beetle in Alaska in the mid-1990s, Flint (2006) found that community perceptions of impacts ranged from (1) acknowledging that the insect is a natural component of the ecosystem to (2) considering that the outbreak was a socioeconomic and ecological disaster for the community. Others viewed it as an opportunity to generate income by processing dead trees. These results illustrate an exciting and important but unexplored avenue of research, which may lead to landscape-level quantification and modeling of outcomes of bark beetle activity. This will enhance forest management strategies that accommodate the full range of concerns of communities impacted by outbreaks.

Fire and Bark Beetle Interactions. Interactions between bark beetles and fire can take two different forms. First, fire can cause tree injury and change the volatile emissions of conifers (Kelsey and Joseph 2003), thereby increasing susceptibility to bark beetles. Second, bark beetles can change the forest environment thereby influencing the probability, extent, or behavior of fire events. Authors cite examples of delayed tree mortality by what appear to be interactions between fire effects and large numbers of bark beetle attacks (Hood and Bentz 2007). Further examination of these interactions may lead to the development of postfire salvage harvesting guidelines for forest sustainability within and adjacent to wildfire-impacted stands by identifying trees that survive fire, but may ultimately succumb to bark beetle attacks (Sieg et al. 2006).

Although it is widely believed by land managers and the public that bark beetle outbreaks set the stage for severe wildfires, few scientifically and statistically sound studies have been published on this topic (Figure 3). Bark beetles can influence the spatial distribution and conditions of fuels, which in turn may influence fire occurrence, behavior, and severity. By causing needles to dry and creating snags, bark beetles can change the composition, size, distribution, compactness, and arrangement of forest fuels. Page and Jenkins (2007) concluded the net result of a mountain pine beetle infestation in lodgepole pine forests was a highly altered fuels complex in which litter and fine fuels increase during current outbreaks and live surface fuels and large dead woody fuels dominate postoutbreak stands. A thorough examination of the fate of fuels after bark beetle outbreaks can shed light on the potential need for managing the downed wood.

Postoutbreak wildfire risk changes may depend on time since tree death and beetle-caused changes in stand structure. Lynch et al. (2006) found a delayed interaction between beetles and fire and reported that the Yellowstone fires of the late 1980s were preceded by two mountain pine beetle outbreaks in 1972–1975 and 1980–1983. Only the former influenced fire behavior. The authors attributed the effect to changes in stand structure that resulted in increased fuel ladders. This relationship between bark beetle–caused tree mortality and wildfire may be cover-type specific, or may be site specific. For instance, in Yellowstone, studies suggest that the probability of burning increases 11% in beetle-affected lodgepole pine stands compared with unaffected stands (Lynch et al. 2006). In Colorado, Bigler et al. (2005) attributed a slight increase in probability of fire occurrence in a spruce forest after a spruce beetle outbreak partly to an increase in ladder fuels and Bebi et al. (2003) indicated that spruce beetle outbreaks had no effect on fire susceptibility. Berg and Anderson (2006) concluded that there was no relationship between spruce beetle–caused tree mortality and subsequent wildfire occurrence in Alaska. We need to better define the conditions, if any, where bark beetle outbreaks may influence fire occur-

![Figure 3. Fire and bark beetle interactions. The Left Hand Canyon fire occurred in a ponderosa pine stand where mountain pine beetle had previously caused tree mortality, Arapaho-Roosevelt National Forest, Colorado. Little is known about the relationship between bark beetle–caused tree mortality and the probability of occurrence or fire behavior of subsequent wildfires. (Photo courtesy of John Popp, US Forest Service.)](image1)

![Figure 4. Climate change effects on bark beetles. Whitebark pine killed by mountain pine beetle in Yellowstone National Park. Bark beetles are becoming more common in high elevation forests and at northern latitudes. Climate change may be a predisposing factor. (Photo courtesy of Ken Gibson, US Forest Service.)](image2)
Climate Change Effects on Bark Beetles. Important bark beetle life history strategies are directly influenced by temperature and are sensitive to climate change (Figure 4; Logan et al. 2003). Recent outbreaks of bark beetles in the western United States have coincided with increased temperatures and changes in precipitation patterns, suggesting a response to a changing climate (Shaw et al. 2005). Climate change influences bark beetles directly through effects on developmental timing, temperature-induced mortality, and disruption of host selection behavior and establishment. Because mortality from cold exposure is considered a key factor in bark beetle population dynamics (Bentz and Mullins 1999), increasing minimum temperatures associated with climate change can directly influence bark beetle population dynamics.

Conifers have evolved effective defensive response mechanisms against bark beetle attacks (Seybold et al. 2006), and many compounds used in defense reactions will be altered in a changing climate. For example, increases in carbon dioxide (CO₂) will generally stimulate tree growth and increase water use efficiency (Magnani et al. 2004), while tropospheric ozone (O₃) increases are inhibitory to trees, and both gases affect nutrient, secondary metabolite, and defense capacity (Saxe et al. 1998). Study of the effect of these tree-level changes on bark beetle population dynamics and defensive mechanisms of trees against bark beetles is needed to develop strategies for forest protection under a climate change scenario.

Our ability to predict bark beetle response to climate change is limited by a lack of data on species-specific temperature-dependent developmental processes. Currently, phenology models exist for mountain pine beetle (Gilbert et al. 2004) and spruce beetle (Hansen et al. 2001). Additional work is needed to parameterize these existing models to account for regional differences. For other bark beetle species, our current ability to forecast climate change effects on population dynamics is largely qualitative and not sufficient for the development of accurate predictions on the response of bark beetles to a changing climate. Discerning the effects of climate change on the relationship between trees and associated bark beetles may lead to practical tools and approaches to address and manage forests under these new interactions.

Chemical Ecology. Research on the behavior of western bark beetles has revealed the potential utility for semiochemical, rather than insecticidal, applications for manipulating levels of bark beetle–caused tree mortality (Borden 1997). Much of this research has focused on using beetle-produced
antiaggregation pheromones such as methylocyclohexenone (Ross and Daterman 1995) and verbenone (Progar 2005) to protect trees (Figure 5). Others have begun studying the use of nonhost bark volatiles and green leaf volatiles that signal to beetles that the tree they are encountering is outside of their host range (Zhang and Schlyter 2004). Continuing studies in this field will lead to the refinement of semiochemical-based management strategies for mitigating insect-caused tree mortality, particularly in high value areas.

Forest ecosystems are reactive locations, both in terms of the chemistry on plant and physical surfaces and the chemistry of the fluid phase and aerosols in the airspace (Seybold et al. 2006). Our current fundamental understanding of host selection by bark beetles may be inaccurate because of the environmental oxidation of the classes of semiochemicals noted previously. A corollary of this is that the scientific foundation of the commercial and research use of these behavioral chemical tools may need significant refinement.

Additional research is merited on the bioproduction of large quantities of highly pure semiochemicals of western bark beetles and the interaction between bark beetles and conifers during pheromone synthesis. During the last 10 years, great strides have been made in understanding the biosynthesis of western bark beetle pheromones (Seybold and Tittiger 2003).

The key genes and enzymes from the de novo synthesis could be exploited commercially for the production of monoterpene alcohol and bicyclic acetal pheromones of high stereochemical purity for applications particularly for the production of monoterpene alcohols and bicyclic acetal pheromones of high stereochemical purity for applications newly for the production of monoterpene alcohol and bicyclic acetal pheromones of high stereochemical purity for applications in research, development, and application in the West. (US Forest Service 2008c).

Literature Cited

Endnotes

[1] The Forest Service R&D Western Bark Beetle Research Group (WBBRG) was created in January 2007 in Stevenson, Washington. WBBRG includes scientists from the three western Forest Service R&D research stations with expertise in bark beetle research, development, and application in the West. (US Forest Service 2008c).

Concluding Remarks

Forest Service R&D bark beetle research scientists in the western United States will continue to emphasize basic and application-motivated research to enhance our scientific understanding and solve problems faced by our diverse stakeholders (Table 1). The areas of study discussed previously represent the five most fruitful lines of research identified with significant input from specialists in FHP. Cooperative work among US Forest Service research stations and FHP units, universities, and state forest health specialists will enhance the ability to adequately address these exciting areas of research. Interactions among these partners will synergize the work effort and foster creative approaches to solve research questions that can ultimately expand our knowledge base on the interactions between bark beetles and western forest ecosystems.

Literature Cited

