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The developmental response of insects to temperature is important in understanding the ecology of
insect life histories. Temperature-dependent phenology models permit examination of the impacts of
temperature on the geographical distributions, population dynamics and management of insects. The
measurement of insect developmental, survival and reproductive responses to temperature poses prac-
tical challenges because of their modality, variability among individuals and high mortality near the
lower and upper threshold temperatures. We address this challenge with an integrated approach to
the design of experiments and analysis of data based on maximum likelihood. This approach expands,
simplifies and unifies the analysis of laboratory data parameterizing the thermal responses of insects
in particular and poikilotherms in general. This approach allows the use of censored observations
(records of surviving individuals that have not completed development after a certain time) and accom-
modates observations from temperature transfer treatments in which individuals pass only a portion of
their development at an extreme (near-threshold) temperature and are then placed in optimal conditions
to complete their development with a higher rate of survival. Results obtained from this approach are
directly applicable to individual-based modeling of insect development, survival and reproduction with
respect to temperature. This approach makes possible the development of process-based phenology
models that are based on optimal use of available information, and will aid in the development of pow-
erful tools for analyzing eruptive insect population behavior and response to changing climatic
conditions.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The physiological responses of organisms to temperature have
had considerable attention in the scientific literature for more than
a century. Recently, debate focused on a Metabolic Theory of
Ecology (MTE) where temperature and body weight are the funda-
mental determinants of the rates at which life’s central processes
occur: metabolism, development, reproduction, population growth,
species diversity and even ecosystem processes (Brown et al.,
2004). Discussion centers around the existence of a Universal
Temperature Dependence (UTD), in the form of the exponential
Arrhenius equation r ¼ b0 expð�E=kTÞ where r is some rate, b0 is a
proportionality constant that varies between processes and taxa,
E � 0.6 to 0.7 eVK�1 is a near-constant activation energy, and
k = 8.6173 � 10�5 eVK�1 is the Boltzmann constant relating energy
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to temperature, K (�K). Arguments have centered on the validity and
universality of the UTD (Clarke, 2006; Clarke and Fraser, 2004;
Huey and Kingsolver, 2011) and the constancy and ecological corre-
lates of its main parameter E (Dell et al., 2011; Irlich et al., 2009).
The UTD provides an adequate description of biological rate
responses over a limited range of temperatures but over the range
of temperatures to which poikilotherms such as insects are
exposed, responses to temperature are unimodal (Sharpe and DeM-
ichele, 1977; Knies and Kingsolver, 2010). Consequently, the
breadth of temperature range, thresholds and optimum tempera-
tures at which this unimodality is expressed, as well as their
variability are critical (Angilletta et al., 2002; de Jong and van der
Have, 2009; Dixon et al., 2009).

For cold-blooded organisms, including insects, the relationships
between ambient temperature and development, survival and
reproduction scale up from daily or even hourly effects on individu-
als to seasonal patterns of phenology (Schwartz, 1998; Visser and
Both, 2005), population dynamics (Logan et al., 2006; Yang and
Rudolf, 2010), and species distributions including the expanding
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interest in responses to climate change (Bentz et al., 2010; Kramer et
al., 2000; Powell and Logan, 2005; Régnière and Logan, 2003; Sparks
and Carey, 1995). Models that aim to predict the effects of tempera-
ture on the outcomes of these processes must account for the nonlin-
ear nature of the thermal responses involved (Régnière and Logan,
2003; Schaalge and van der Vaart, 1988; Smerage, 1988), as well as
the intraspecific and intrapopulation variability in these responses.

The intrinsic variability of developmental rates among individu-
als within populations (sensu Yurk and Powell, 2010) influences the
observed distribution of phenological events in those populations.
Thermal responses are often asymmetrically distributed and as
such they can alter the timing of life stages (Gilbert et al., 2004)
and its demographic consequences (Bellows, 1986; Powell and
Bentz, 2009). From mathematical descriptions of these distribu-
tions, simulation models can generate age or stage frequencies
including survival and reproduction over time in response to tem-
perature input regimes. The most commonly used model categories
are distributed delays (Manetsch, 1976), cohort-based (Sharpe
et al., 1977), and individual-based (Cooke and Régnière, 1996;
DeAngelis and Gross, 1992; Grimm, 2008).

Three issues in the design and analysis of temperature response
experiments used to estimate parameters of phenology models are:
(1) analysis of development times or their inverse, development
rates (Kramer et al., 1991); (2) estimation of development times
at temperatures near thresholds (extremes) where excessive mor-
tality or developmental abnormalities such as the inability to hatch
from an egg may occur; and (3) the relationship between individual
variation and average developmental rates (Régnière, 1984; Wag-
ner et al., 1984) and reproductive responses (Régnière, 1983).

In this paper, we propose a formal methodological framework
within which to design experiments and analyze data on insect
development, survival and reproduction responses estimated from
individuals observed living in controlled, but not necessarily con-
stant, temperatures. Our framework allows: (1) the use of censored
data, where observations are interrupted after a certain time; (2)
parsing of variance contributions between individual (intrinsic)
and lack-of-fit; and (3) more precise estimation of thresholds by
the transfer of individuals between extreme and moderate temper-
atures. It expands, simplifies and unifies the analysis of laboratory
data parameterizing the thermal responses of insects in particular
and poikilotherms in general. We demonstrate this approach using
simulated data, data from the literature on the eastern spruce
budworm Choristoneura fumiferana (Clem.), the spruce budmoth
Zeiraphera canadensis Nutuua and Freeman (Lepidoptera: Tortrici-
dae), the melon fly Bactrocera cucurbitae (Coquilett) (Diptera:
Tephritidae), as well as new data from the mountain pine beetle
Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae,
Scolytinae) and the western spruce budworm C. occidentalis Free-
man (Lepidoptera: Tortricidae).
2. Theory

2.1. Rate-summation models of insect development

The development rates of insects are rarely measured directly.
Instead, they are calculated as the inverse of observed develop-
ment time, such as the number of days between oviposition and
hatch or between successive larval moults, and are expressed as
proportions of total stage duration per unit of time. Development
time and rate are related by:

sðT;AÞ ¼ 1
rðT;AÞ ; ð1Þ

where s(T,A) represents the modeled average time required to com-
plete the life stage at temperature T, and A is a vector of parameter
values of temperature-response function r(T,A). To model develop-
ment under fluctuating temperature regimes, it is necessary to sum
(integrate) development rates over short time steps, Dt, usually of a
day or less (Régnière and Logan, 2003). This sum represents within-
stage physiological age, a (proportion of the stage completed, from
0 at the onset to 1 at completion):

at ¼
Z t

0
rðTt;AÞdt ffi

Xt

0

rðTt;AÞDt: ð2Þ

As defined here, a is analogous to the physiological time scale
defined by van Straalen (1983) under the assumption of linear
development responses (see de Jong and van der Have, 2009).

2.2. Developmental responses to temperature and distributions

Many functions describe the developmental responses of in-
sects to temperature. They can be classified in order of complexity,
as represented by the number of parameters required. Seven func-
tions are described in Table 1 (hereafter referred to as (A1)–(A7)).
Of these, the Sharpe–Schoolfield model (A7) (Sharpe and DeMic-
hele, 1977; Schoolfield et al., 1981) is the most ‘‘mechanistic’’ as
it is based on enzyme kinetics. It is related to the UTD as it incor-
porates the Arrhenius equation (see De Jong and van der Have,
2009). Many of the other functions in Table 1 are simpler empirical
mathematical descriptions of the shape of the temperature re-
sponses without a true mechanistic basis.

Let tij represent the development time of individual i in treatment
j at constant temperature T. Index j could be a temperature treat-
ment, replicate, sub-population, or some other sample unit of the
experimental design. There are two sources of variation that make
tij – s(T, A). First, individuals vary in their responses to temperature.
Second, additional sources of variation are pooled together as lack-
of-fit between the theoretical thermal response, s(T, A), and the true
mean (or expected) development time, E(tj). If we define an individ-
ual’s deviation from E(tj) as dij, and the lack-of-fit between theoret-
ical response and treatment mean, tj, we get:

tij ¼ dijtjsðT;AÞ: ð3Þ

This formulation assumes that the distribution of development
time among individuals does not vary with temperature but that
its variance is proportional to the square of the mean. Various func-
tions have been used to describe this distribution based on their
flexibility or simplicity (Dangles et al., 2008; Régnière, 1984; Stin-
ner et al., 1975; Wagner et al., 1984; Yurk and Powell, 2010). We
favor the lognormal distribution for three reasons. It ensures that
d P 0, which is consistent with the fact that rates can only be
P0 in all individuals at all temperatures (development cannot re-
gress). It is asymmetrical with a more or less pronounced positive
skew (longer right-hand tail), which is a characteristic often ob-
served in the distributions of both development times and devel-
opment rates in insects (Curry et al., 1978). And it can be
inverted without consequence (if e is normally-distributed then
d = ee and 1/d = e�e are both lognormally-distributed), the error
structure is the same whether variability is expressed as develop-
ment times or development rates. Thus:

eij ¼ lnftij=½tjsðT;AÞ�g; ð4Þ

is a normally-distributed random variable with mean le ¼ �1=2r2
e

and variance r2
e (the skew of the lognormal distribution requires a

non-zero le so that E(dij) = 1; Hilborn and Mangel, 1997). Because it
is based on an expected value (a mean), the lack-of-fit term,

tj ¼ EðtjÞ=sðT;AÞ; ð5Þ

can be assumed to be a multiplicative normally-distributed random
effect with mean 1 and variance r2

t that is random with respect to
treatment.



Table 1
Selected temperature-dependent development rate equations.

Formulation Validity range Parameters Source

(A1) rðTÞ ¼ we�
1
2½ðT�ToÞ=Do �2 T > �273 3 Taylor (1981)

(A2) rðTÞ ¼ wTðT � TbÞðTm � TÞx Tb 6 T 6 Tm 4 Brière et al. (1999)
(A3) rðTÞ ¼ w 2ðT�TbÞa ðTo�TbÞa�ðT�TbÞ2a

ðTo�TbÞ2a

h i
Tb 6 T 6 Tm 4 Wang and Engel (1998)

where a ¼ ln 2= ln½ðTm � TbÞ=ðTo � TbÞ�
(A4)

rðTÞ ¼ w ðT�TbÞ2

ðT�TbÞ2þj
� e�

Tm�ðT�Tb Þ
Dm

� �
Tb 6 T 6 Tm 4 Hilbert and Logan (1983)

(A5) rðTÞ ¼ w ½exðT�TbÞ � 1� � ½exðTm�TbÞ � 1�e�ðTm�TÞ=Dm
� 	

Tb 6 T 6 Tm 5 Hansen et al. (2011)

(A6) rðTÞ ¼ w exðT�TbÞ � Tm�T
Tm�Tb


 �
e�xðT�TbÞ=Db � T�Tb

Tm�Tb


 �
exðTm�Tb Þ�ðTm�TÞ=Dm

h i
Tb 6 T 6 Tm 6 This paper

(A7]
rðTÞ ¼

q25
TK
298 exp

HA
R

1
298�

1
TK


 �h i

1þexp HL
R

1
TL
� 1

TK


 �h i
þexp HH

R
1

TH
� 1

TK


 �h i T > �273 6 Schoolfield et al. (1981)

where TK is temperature in temperature in �K and R = 1.987
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2.3. Parameter estimation by maximum likelihood

Unimodal development response functions can be fit to obser-
vations by least-squares regression using mean or median rates
or times as dependent variables. Variability is described by fitting
some empirical distribution to deviations between observed indi-
vidual and predicted values (see Wagner et al., 1991). Alterna-
tively, models with intrinsic distributions can be fit to individual
data by maximum likelihood (Hansen et al., 2011; Yurk and Powell,
2010). Here, we formalize and generalize this approach.

Observations of development are made at intervals of dt days.
So, the probability that individual i in treatment j at constant tem-
perature Tj completes a stage during the observation interval
[t � dt, t] is:

qijðre;rt;AÞ ¼ f ðtjÞ F ln
t

tjsðTj;AÞ

� �� �
� F ln

t � dt
tjsðTj;AÞ

� �� �� �
;

ð6Þ

where F is the cumulative normal probability distribution with var-
iance r2

e and mean �1=2r2
e and f is the normal probability density

function with variance r2
t and mean 1. The negative log likelihood

(LL) to be minimized is:

LLðre;rt;AÞ ¼ �
X

i

X
j

ln½qijðre;rt;AÞ�: ð7Þ

The set of parameter values A, rd and rt that minimize LL can be
found through iterative optimization routines such as Procedure
NLMIXED of SAS (see Appendix A for suggested SAS code). While
the details of Eq. (6) are specific to the normal distribution assumed
for t and the lognormal distribution for d (see Eq. (4)), its general
form (probability of a value of t times the difference in cumulative
probabilities of d between two successive observations) applies to
whichever distribution is most appropriate. Also, there is no
requirement that the observation interval be constant. It could vary
from treatment to treatment or even between individuals.

2.3.1. Censored data
Observations at cool temperatures where development is slow

may end before the stage is completed but while individuals are
still alive. These constitute censored observations and we know
that the actual development time is at least as long as the period
when observations were censored. These censored data can be
used in parameter estimation. Because we cannot estimate the
mean development time in a treatment that contains censored
observations, we assume that t = 1 for that treatment. The likeli-
hood that an individual would complete its development in more
than tij is simply 1 � F(eij, A), where eij is defined by (4). Thus, when
censored observations are present, the general likelihood, whether
censored or not, is given by:
lijðre;rt;AÞ ¼ ð1� dijÞqijðre;rt;AÞ þ dij½1� Fðeij;AÞ�; ð8Þ

where

dij ¼
0 if not censored
1 if censored

�
ð9Þ

and the negative log likelihood to be minimized is:

LLðre;rt;AÞ ¼ �
X

i

X
j

ln½lijðre;rt;AÞ�: ð10Þ
2.3.2. Temperature transfers (near-threshold development)
Threshold temperatures are an idealized characteristic of devel-

opment responses in the sense that they are not actually measured.
In degree-day models, for example, the lower threshold tempera-
ture is estimated by extrapolation of the linear portion of the
development-rate response data (Bergant and Trdan, 2006; Honek
and Kocourek, 1990). Critical development times near the lower or
upper temperature extremes, however, are notoriously difficult to
estimate because most insects die before completing their devel-
opment. Nevertheless knowledge of development rates at near-
threshold temperatures is important to accurately predict develop-
ment under fluctuating temperatures (de Jong and van der Have,
2009). This is especially true when using models to predict pheno-
logical events when seasonal temperatures hover near the lower
threshold temperature (Worner, 1991, 1992).

To obtain reliable estimates of development time near such ex-
tremes, insects can be exposed first to a near-threshold tempera-
ture (T1) for a fixed amount of time (t1); short enough to avoid
excessive mortality but long enough for significant development
to occur, and then transferred to another temperature (T2) to re-
cord the time t2,i required by individual i to complete the stage un-
der more optimal conditions. For individuals involved in such
transfer treatments, development is complete when:

t1;j

dijtjsðT1;AÞ
þ t2;ij

dijtjsðT2;AÞ
¼ 1: ð11Þ

By rearranging (11), we get:

eij ¼ ln
t1;j

tjsðT1;AÞ
þ t2;ij

tjsðT2;AÞ

� �
; ð12Þ

and Eq. (6) becomes

qijðre;rt;AÞ ¼ f ðtjÞ F ln
t1;j

tjsðT1;AÞ
þ t2;ij

tjsðT2;AÞ

� �� ��

�F ln
t1;j

tjsðT1;AÞ
þ t2;ij � dt

tjsðT2;AÞ

� �� ��

where F is the cumulative normal probability distribution with var-
iance r2

e and mean �1=2r2
e and f is the normal probability density
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function with variance r2
t and mean 1. Note that Eq. (6) is a special

case of Eq. (13) where t1 � 0 (no transfer treatment), and that Eq.
(13) can represent the qij(re, rt, A) term in Eq. (8) to estimate the
parameter set A, rd and rt when a design includes both censored
and transfer treatment data (see Appendix A for an example of
SAS code).

2.3.3. Modeling from means and sample sizes
A developmental response curve, and the associated variability,

can be fit to mean development times (�tj) and their associated sam-
ple sizes (nj) by maximum likelihood even when data for individu-
als are not available. Using the definitions, notation and
assumptions of Eq. (3), the mean of each treatment j is described
by:

�tj ¼ �djtjsðTj;AÞ ð14Þ

where �dj ¼
P

idij=nj. While dij are lognormally distributed, their
mean is approximately normally distributed because of the central
limit theorem and we get:

�dj ¼
�tj

tjsðTj;AÞ
� N 1;

r2
d

nj

� �
ð15Þ

with tj � Nð1;r2
tÞ. When treatment j involves a temperature trans-

fer from T1j for t1j days, to temperature T2j for the remainder of
development (averaging �t2j), this becomes:

�dj ¼
t1j

tjsðT1j;AÞ
þ

�t2j

tjsðT2j;AÞ
: ð16Þ

The probability of observing mean development time �tj (or �t2j

with temperature transfers) is:

qjðrd;rt;AÞ ¼ f ðtjÞf ð�djÞ ð17Þ

where f is the normal probability density function, with mean 1 and
variance r2

t or r2
d=nj. The negative log likelihood to be minimized is:

LLðrd;rt;AÞ ¼ �
X

j

ln½qjðrd;rt;AÞ� ð18Þ

(see Appendix B for sample SAS code). Because the distribution of
individual variation is assumed to be lognormally distributed (i.e.,
d = ee), where r2

d ¼ er2
e � 1, we get:

r2
e ¼ lnðr2

d þ 1Þ ð19Þ
2.4. Modeling oviposition

In many species, cumulative oviposition follows a pattern of
diminishing returns; the daily rate of oviposition declines with
age. We assume that females oviposit a constant proportion, k, of
their remaining fecundity, Ft, per unit of time. This proportion
can be a function of temperature, k(T, B), with set of parameters
B. Under these assumptions, the oviposition rate is:

dFt

dt
¼ �kðT;BÞFt : ð20Þ

Females may also have a pre-oviposition period, t0, during
which they mate, disperse, and complete maturation. Solving
(20) at constant temperature T for this situation yields
Ft ¼ F0e�kðT;BÞðt�t0Þ, where F0 is mean (potential) fecundity. We also
assume lognormal variation in fecundity so that an individual’s ini-
tial fecundity is gij ¼ eeij , where eij � NðlnðF0Þ � 1=2r2

e ;r2
e Þ. In many

experiments, the number of eggs laid is measured on several occa-
sions, indexed k, for each female throughout the interval [tk�1, tk].
The expected oviposition by individual ij during that interval is:

Oijk ¼ gij½e�kðTj ;BÞðtk�1�t0Þ � e�kðTj ;BÞðtk�t0Þ� for t P t0: ð21Þ
Parameters F0, re and B can be estimated from these data by
maximum likelihood. The number of eggs laid, Eijk, by female ij
during interval k is a Poisson variable with expected value Oijk,
and we get the probability of observing Eijk:

qijkðre;BÞ ¼ f ðeijÞ
O

Eijk

ijk e�Oijk

Eijk!
; ð22Þ

where f is the normal probability density function with variance r2
e

and mean lnðF0Þ � 1=2r2
e . The negative log likelihood to be mini-

mized is:

LLðre;BÞ ¼ �
X

i

X
j

X
k

ln½qijkðre;BÞ�: ð23Þ
2.5. Modeling survival

In experiments designed to estimate development time using
constant temperatures, survival during the life stage is commonly
measured. Resulting observations of survival are typically modal
with poorest survival at low and high temperatures. The causes of
reduced survival near threshold temperatures can include heat or
cold injury as well as bottlenecks when discrete developmental
events such as egg hatch or larval moult cannot occur. These survival
rates may be related to temperature by regression analysis. Predict-
ing survival under variable temperatures requires calculation of
mean temperature over the development period. Because of the
strong unimodal non-linearity of the survival response, an approach
similar to that used for development can be applied to survival data.

A parsimonious hypothesis is that life-stage survival at temper-
ature T in treatment j is the simple result of exposure to a constant
daily jeopardy that is a function of temperature, c(Tj, C), where C is
a vector of parameter values. Survival over the duration of a given
life stage in treatment j is:

Sj ¼ cðTj;CÞ
�tj ; ð24Þ

where �tj is the average duration of the stage in treatment j or, if a
treatment involves a temperature transfer:

Sj ¼ cðT1;CÞt1cðT2;CÞ
�t2 ; ð25Þ

with temperatures T1 and T2 for times t1 and �t2 as defined earlier.
The estimate of survival probability is based on average develop-
ment time so the number of survivors, kj, out of the initial number,
nj, in a treatment is a Poisson variable, with expected mean njSj. The
negative log likelihood to be minimized is:

LLðCÞ ¼ �
X

j

ln½ðnjSjÞkj e�njSj

kj!
� ð26Þ

(see Appendix B for sample SAS code). When used in a variable tem-
perature context, Eq. (24) becomes:

St ¼
Y

t

cðTt;CÞDt
; ð27Þ

where Dt is the time step (fraction of a day). The stage-specific sur-
vival response to constant temperature is defined completely by
replacing observed mean development times (�tj) in Eq. (24) by
the stage’s developmental response function (Eq. (1)):

S ¼ cðT;CÞsðT;AÞ: ð28Þ
3. Materials and methods

3.1. Simulated dataset

To illustrate the analytical approach and test the efficacy of cen-
soring and temperature transfer treatments on improving the qual-
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ity of the thermal response functions obtained, we used a simu-
lated dataset. First, we generated a ‘‘true’’ thermal response using
Eq. (A6) with A = {Tb = 5, Db = 0.1, Tm = 33, Dm = 3, x = 0.13,
w = 0.01}, rd = 0.15 and rt = 0.1. This function includes explicitly
two developmental thresholds and their respective boundary re-
gions (Tb, Db: lower; Tm, Dm: upper). At temperatures T = {4, 8,
12, 16, 20, 24, 28, 32 �C}, we applied lack-of-fit error by drawing
values of t 2 Nð1;r2

tÞ at random. This yielded three stochastically
different mean development times ts(T) for each temperature.
From each mean, we drew a sample of 50 random values of
e � Nð�1=2r2

d ;r2
dÞ to obtain d = ee which were multiplied by their

mean and rounded to the nearest day (the observation interval).
This provided a sample of 1200 individual observations of develop-
ment time t = round[dts(T, A) + 0.5].

These data constituted the first ‘‘experiment’’; censoring was
applied to individuals with development times P75 days. No indi-
viduals at 4 �C completed development prior to censoring and only
a few were censored at 8 �C. In a second experiment, individuals
were transferred to T2 = 16 �C after t1 = 30 days at 4 �C, t1 = 20 days
at T1 = 8 �C or t1 = 6 days at T1 = 32 �C. No censoring was applied.
The time required to complete development at 16 �C was calcu-
lated and rounded off to the nearest day to provide individual val-
ues of t2.

We applied a constant, temperature-independent daily survival
probability, s = 0.98 to make the dataset more realistic. Under these
conditions, the probability of individual ij surviving to the end of
its development is PðsurvivalÞ ¼ stij for individuals kept at constant
temperature, PðsurvivalÞ ¼ sc for censored observations (c = 75 in
our example), and PðsurvivalÞ ¼ st1 st2 for those in transfer treat-
ments. The fate of individuals (survival or not) was set by drawing
a uniformly distributed random number n in the range [0,1] for
each and using n 6 P(survival) as the criterion for survival. The
parameters of another model (Eq. (A7)) were estimated by maxi-
mum likelihood using these simulated data. This particular model
was chosen because its complexity (six parameters) is similar to
that of our ‘‘true’’ relationship. To start the numerical optimization
procedure, initial parameter values that provided a reasonable fit
to the data were chosen.

3.2. Western spruce budworm and spruce budmoth egg development

Individual egg masses (each containing about 20 eggs on aver-
age) of western spruce budworm (C. occidentalis) obtained from
wild adult moths collected as pupae were placed in dry glass vials
at seven constant temperatures (4.7, 8.7, 12.1, 15.6, 20.7 24.1 and
28.0 ± 1 �C). Egg masses were kept for 28–31 days at either 4.7 or
8.7 �C, and then transferred to 15.6 �C to hatch. Sample sizes
ranged from 19 to 24 egg masses per temperature, except in the
4.7 �C treatment in which only 3 egg masses hatched. An additional
67 egg masses obtained from a diet-fed (McMorran, 1965) labora-
tory colony of C. occidentalis (Canadian Forest Service, Sault Ste.
Marie, ON, Canada) were placed either at 5.1 �C for 30 days then
transferred to 15.8 �C to complete development (n = 34) or were
kept at 15.8 �C throughout (n = 33). Only 4/34 egg masses in this
additional transfer treatment hatched, compared to 30/33 of those
kept at 15.8 �C. Hatch was recorded daily. As individual eggs from
spruce budworm egg masses hatch within minutes of each other,
an egg mass was considered an individual in the analysis. This
dataset (n = 160) provided an opportunity to test a variety of mod-
els using the same data. We tested Eqs. (A1)–(A7), and the best
model was chosen on the basis of the corrected Akaike Information
Criterion (AICc) that takes simultaneously into account the maxi-
mum likelihood, the number of parameters of the model and sam-
ple size.

Data on the duration of egg development of spruce budmoth Z.
canadensis were taken from Table 1 in Régnière and Turgeon
(1989). These data consist of the mean and sample size of develop-
ment time from seven constant temperature treatments (7.6, 12,
16.3, 19.5, 23.4, 30 and 31.9 �C), plus two transfer treatments (32
or 38 days at T1 = 7.6 �C, with development completed at
T2 = 19.5 �C). Data analysis followed the approach described in
Eqs. (14)–(19), with Eq. (A7) as temperature-response model.
3.3. Mountain pine beetle development and oviposition

Time to complete each life stage of the mountain pine beetle
(egg, four larval instars, pupa and teneral adult) was determined
for populations collected in lodgepole pine (Pinus contorta) stands
over several years from central Idaho and northern Utah, USA. Indi-
viduals were reared in 15 � 15 cm phloem sections sandwiched
between plexiglass plates which enabled observation of changes
in life stages (Bentz et al., 1991; Hansen et al., 2011) as follows.
Mountain pine beetle-infested trees were felled and infested billets
held in the laboratory to obtain emerging parent adults. Male–fe-
male pairs were inserted manually into un-infested billets of
lodgepole pine. After 7-10 days eggs were collected and manually
inserted into niches in phloem sandwiches. Sandwiches were kept
in constant humidity desiccators in environmental chambers (Per-
cival Scientific, Inc., Gray et al., 1998) at constant temperatures
ranging from 4 to 27.5 �C. Larval moults were indicated by charac-
teristic head capsule widths (Logan et al., 1998) and presence of
the discarded head capsule of the previous stage. Development
time of pupae and teneral adults at temperatures below the pupal
threshold were determined by rearing individuals through the
fourth instar at 20 �C and then placing the individual larvae within
the phloem sandwich at the lower temperature. Completion of the
teneral adult life stage was identified as the time when the new
adult chewed out of the phloem sandwich. At low temperatures,
observations were often censored because experiments stopped
while individuals were still alive but had not yet moulted (e.g.
150 days). We tested Eqs. (A1)–(A7) using egg development times
and selected the best model based on the AICc (this was (A[6]). We
applied the same model to describe the developmental responses
of all other stages. For the oviposition model, the number of eggs
laid by 275 adult females was determined in experimentally in-
fested billets after 1, and 10–16 days at eight constant tempera-
tures between 7 and 24 �C (Amman, 1972).
3.4. Survival of melon fly eggs and spruce budworm larvae at constant
temperature

To illustrate the use of Eqs. (24)–(28), we analyzed published
data on survival of eggs of the melon fly (Messenger and Flitters,
1958, their Table 2) and spruce budworm larvae (Weber et al.,
1999, their Tables 2 and 3). Melon fly egg hatch was observed
hourly at 22 temperatures between 11.4 and 36.4 �C. The duration
of larval development (from third instar to pupation) was mea-
sured daily for spruce budworm originating from six sites along a
latitude gradient in Alberta, Canada, at 10 constant temperatures
between 9.3 and 33 �C. Both datasets consist of the number of indi-
viduals reared and surviving, and the average development time at
each temperature i (and from each population j in the case of
spruce budworm).

For melon fly eggs, we used a 4th-degree polynomial in a
logistic model of the form cðT;CÞ ¼ 1=½1þ expðaþ bTþ cT2þ
dT3 þ eT4Þ� to describe the relationship between daily survival rate
and temperature in Eq. (24). For spruce budworm larvae, a 2nd-
degree polynomial was sufficient. However, to test for significant
differences between source populations, we introduced in the
analysis a random factor tk 2 Nð1;r2

tÞ associated with population
k so that ckðT;CÞ ¼ 1=½1þ expðaþ bT þ cT2Þ� þ tk in Eq. (24).



Table 2
Parameter estimates (±standard error) and maximum likelihood from simulated
datasets fitted to Eq. (A7).

Parameter Original Censored at 75 days With transfers

q25 0.119 ± 0.004 0.119 ± 0.004 0.121 = 3 ± 0.004
HA 19764 ± 978 19764 ± 867 19764 ± 898
HL �60000 ± 9 �60000 ± 7 �60000 ± 27
TL 265.6 ± 104.9 272.1 ± 5.6 278.3 ± 0.7
HH 100017 ± 34 100017 ± 28 100017 ± 36
TH 303.2 ± 0.2 303.2 ± 0.2 303.1 ± 0.2
re 0.153 0.155 0.159
rt 0.077 ± 0.015 0.077 ± 0.014 0.075 ± 0.015
LL �1653.8 �1565.1 �1774.0
AIC 3323.5 3146.3 3564.0

Fig. 1. Illustration of simulated censored and temperature-transfer datasets, and of
analysis results. (a) Development time and (b) development rate: dotted line: ‘‘true’’
response (Eq. (A6)); solid black line: Eq. (A7) fitted to 75-day censored dataset. Red
line: Eq. (A7) fitted to transfer-treatment dataset (no censoring). Inset: higher-
resolution view of the lower temperature threshold. (c) Survival; line is survival in
the absence of censoring or transfer treatments. 4: Simulated data (constant
temperature); : transfer treatments.
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In both examples, the full survival response to temperature was
obtained by fitting Eq. (A7) to mean development times and sam-
ple sizes to describe the development time responses to tempera-
ture s(T, A) in Eq. (28). The data and SAS code used to conduct the
analysis of spruce budworm survival are in Appendix B.

4. Results

4.1. Simulated dataset

The maximum likelihood estimation algorithm converged easily
in all cases to provide very good parameter estimates to Eq. (A7)
for both the censored and the temperature-transfer datasets
(Fig. 1a and b; Table 2). Both methods resulted in much higher sur-
vival in the low-temperature treatments than if individuals had
been allowed to complete their development without censoring
or temperature transfers (Fig. 1c). There was not much difference
in the quality of development rate estimates at temperatures
P8 �C. However, neither the censored nor uncensored data
provided enough information to estimate accurately the lower
threshold temperature represented by parameter TL (uncensored:
265.6 ± 104.9�K; censored: 272.1 ± 5.6�K), while the temperature-
transfer treatment from 4 to 16 �C allowed the model to estimate
a much more realistic lower threshold of TL = 278.3 ± 0.7 K (5.3 �C
compared with the ‘‘true’’ value of 5 �C) (inset, Fig. 1b). The upper
threshold, beyond which development rates drop sharply, was
estimated well with all three datasets at TH = 303.1 to
303.2 ± 0.3�K (30.1–30.2 �C). Estimates of variances were close
to the true values in all cases. The maximum likelihood method
estimated re = 0.153 to 0.159 and rt = 0.075 to 0.077 compared
with the ‘‘true’’ values of re = 0.15 and rt = 0.1.

4.2. Western spruce budworm and spruce budmoth egg development

Western spruce budworm egg development data were de-
scribed by all seven models tested and convergence of the iterative
Table 3
Comparison of the best fit between seven models and the western spruce budworm egg d

Parameter (A1) (A2) (A3)

1 To = 29.7 Tb = 5.5 Tb = .5
2 Do = 9.5 Tm = 41.5 Tm = 39.8
3 w = 0.19 x = 0.643 To = 30.0
4 w = 0.000055 w = 0.189
5
6
re 0.0645 0.0659 0.0653
rt 0.0973 0.0830 0.0864

LL �215.4 �212.0 �213.2
AIC 440.7 436.0 438.3
AICc 442.8 439.0 441.3
Parameters 5 6 6
optimization was obtained easily in all cases. This dataset con-
tained data from transfer treatments between the three lower tem-
peratures (4.7, 5.1 and 8.7 �C) and 15.6 or 15.8 �C. The highest
likelihood and lowest AICc were obtained with Eq. (A2) (Table 3;
Fig. 2a and b). There was no relationship between model negative
log-likelihood and the estimate of re. However, the lack-of-fit term
rt varied considerably and was lowest with the best-fitting model
(Fig. 3a), a relationship that illustrates the importance of including
lack-of-fit variance rt so that the estimate of individual variation
rd is not artificially inflated by a poorly-fitting model.

Spruce budmoth egg development data were very well de-
scribed by Eq. (A7) (Fig. 2c and d) with parameters q25 = 0.117 ±
evelopment dataset. The best model was Eq. (A2), as illustrated in Fig. 2.

(A41) (A5) (A6) (A7)

Tb = 2.0 Tb = 0.0 Tb = 7.2 q25 = 0.158
Tm = 43.0 Tm = 34.6 Db = 1.7 H

A = 11443
Dm = 4.78 Dm = 5.9 Tm = 39.9 TL = 283.9
j = 1861.4 x = 0.141 Dm = 8.7 HL = �59715
w = 0.761 w = 0.0231 x = 0.109 TH = 308.22

w = 0.0469 HH = 99958
0.0637 0.0640 0.0702 0.0627
0.0716 0.0928 0.0836 0.0781

�213.4 �214.2 �212.1 �212.2
440.7 442.4 440.3 440.4
444.9 446.5 445.8 445.9
7 7 8 8
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0.012, HA = 13476 ± 2176, HL = �60076 ± 144, TL = 279.7 ± 1.2�K,
HH = 59946 ± 81, TH = 303.8 ± 3.0�K and a small amount of lack-
of-fit variation rt = 0.03. From the mean development times and
sample sizes, we estimated rd = 0.36, or re = 0.12 (Eq. (19)). This
dataset provides a good example of the use of temperature transfers
to measure development rates at low temperatures. Estimates of
development time and rate obtained from two different transfers
between 7.6 and 19.5 �C compared very well with the measure-
ments obtained from insects kept at 7.6 �C throughout their devel-
opment (Fig. 2d).

4.3. Mountain pine beetle development and oviposition

Eq. (A6) provided the best fit, with the highest likelihood and
lowest AICc for the mountain pine beetle egg development dataset
(Table 4; Fig. 4a–c). As was the case with western spruce budworm
egg development, there was no relationship between model good-
ness of fit and the estimate of rd but there was a very definite one
with the lack-of-fit term rt (Fig. 3b). Slightly better fits based on
the AICc were obtained with Eq. (A5) for a few other life stages
but we used Eq. (A6) for all stages, including oviposition (Table 5;
Fig. 4v–x), for the sake of consistency. The presence of censored
data at lower temperatures in the egg (Fig. 4a and b) and larval
stages helped considerably in determining the position of lower
temperature thresholds (Fig. 4d, e, g, h, j and k; Tables 4 and 5). It
is in the fourth instar that the lower development threshold was
highest (Tb = 16.2 �C; Db = 0.04 �C), reflecting the conclusions of
previous authors (Bentz et al., 1991; Powell et al., 2000) concerning
the synchronizing role of the thermal response of this life stage in
the seasonality and voltinism of the mountain pine beetle
(Fig. 4m and n). The data for eggs and larval stages 1–3 provided
sufficient evidence for the estimation of upper temperature thresh-
olds (Fig. 4b, e, h and k). In the fourth instar, however, the absence of
Fig. 2. Egg development data from two species of tortricids. Individual egg masses of we
Average spruce budmoth egg (c) development times and (d) development rates (Eq. (A7
sufficient high temperature data forced us to limit this threshold to
28 �C to maintain consistency with the estimates obtained for the
third instar and pupa (Fig. 4n). Teneral adults were observed evac-
uating the experimental set-ups at 8 and at 30 �C (Fig. 4s) which led
to threshold estimates of Tb = 4.2 �C (Db = 0.1 �C) and Tm = 35 �C
(Dm = 7.2 �C; Fig. 4t). This emergence response differs from an adult
flight threshold in the field which is estimated to be approximately
15.5 �C (Reid, 1962). Oviposition occurred at temperatures as low as
7 �C and the upper threshold was estimated at Tm = 27.7 �C
(Dm = 3.1 �C; Fig. 4w). According to the available data and the mod-
el being used, average fecundity was F0 = 81.8 eggs per female. Our
model suggests that in an unlimited phloem habitat, females can
oviposit 95% of their eggs in 22 days at 24 �C (Fig. 4v).

The distribution of individual development rates around the
expected mean was well approximated by the lognormal for all
stages (Fig. 4 c, f, i, l, o, r, u and x), with the least variability among
eggs (re = 0.180; Fig. 4c) and the most among teneral adults
(re = 0.528; Fig. 4u).
4.4. Survival of melon fly eggs and spruce budworm larvae at constant
temperature

Survival of melon fly eggs (data of Messenger and Flitters, 1958)
was well described by the logistic equation:

Sj ¼
1

1þ eaþbTþcT2þdT3þeT4

� ��tj

; ð29Þ

where a = 151.1 ± 10.9, b = �29.6 ± 2.1, c = 2.03 ± 0.14, d =
�0.0592 ± 0.0041 and e = 0.000625 ± 0.000043 (Fig. 5a). The devel-
opmental response to temperature was described accurately
by Eq. (A7) (Fig. 5b), with parameters q25 = 1.006 ± 0.039, HA =
stern spruce budworm (a) development times and (b) development rates (Eq. (A2)).
)). d: Constant temperature; : transfer treatments.



Fig. 3. Relationship between log likelihood (goodness of fit) and the rd and rt terms in Eq. (3) obtained by fitting various models to (a) western spruce budworm and (b)
mountain pine beetle egg development. The estimates of rd, the individual variation in development times, are stable from model to model, while the value of rq, the lack-of-
fit term, appropriately increases as negative log likelihood increases.
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6609 ± 1156, HL = �41826 ± 1622, TL = 289.8 ± 0.8�K, HH = 147580 ±
9190, TH = 309.0 ± 0.1�K, with rd = 0.238 ± 0.036.

The influence of temperature on daily survival rates during the
larval stages of the spruce budworm (data of Weber et al., 1999)
was described by a second degree polynomial,

Sj ¼
1

1þ eaþbTþcT2 þ tk

� ��tj

; ð30Þ

where a =�2.926 ± 0.504, b =�0.188 ± 0.055 and c = 0.00565 ± 0.00128
with very little variation due to source population (rt = 0.00189 ± 0.00
106, t5 = 1.79, P = 0.13). These parameters indicate that temperatures in
the range of 9.3–25 �C are optimal for the survival of this life stage
(Fig. 5d). Lower daily survival rates were clearly observed at temperatures
>25 �C. The effect of temperature on development time was well described
by Eq. (A7) (Fig. 5e) with parameters q25 = 0.0636 ± 0.0089, HA = 13476 ±
0, HL = �34461 ± 11841, TL = 281.8 ± 1.2�K, HH = 49820 ± 14740, TH =
305.4 ± 1.0�K, with rd = 0.55 ± 0.05, and a vanishingly small amount of
variation due to a population effect.

The overall survival responses to temperature that combine the
equations for the parabolic response of daily survival with devel-
opment time responses into Eq. (28) (Fig. 5c and f) illustrate the
importance of exposure duration in explaining the deleterious ef-
fect of extreme temperatures on survival observed in typical con-
stant-temperature experiments such as these. At both ends of the
Table 4
Comparison of the best fit between seven models and the mountain pine beetle egg deve

Parameter (A1) (A2) (A3)

1 To = 24.5 Tb = 2.7 Tb = 1.6
2 Do = 7.6 Tm = 27.8 Tm = 37.2
3 w = 0.194 x = 0.148 To = 27.2
4 w = 0.000325 w = 0.197
5
6
re 0.182 0.180 0.183
rt 0.146 0.116 0.125

LL 58.9 56.3 56.9
AIC 127.8 124.7 125.9
AICc 128.6 125.9 127.1
Parameters 5 6 6
temperature-response scale (below 10 �C and above 30 �C in these
examples), survival drops sharply because of a combination of in-
creases in daily mortality and development time. These results also
emphasize the usefulness of using temperature transfer treatments
to estimate both survival and development rate near those temper-
ature extremes to overcome the limitations imposed by constant
experimental conditions.
5. Discussion and conclusions

Process-based phenology models for poikilotherms will have
greater utility if they incorporate the entire biological consequences
of physiological responses to temperature and use sufficient data to
provide unbiased estimates of parameters. Improvements are
particularly evident when simulating processes that occur at
near-threshold temperatures where developmental responses are
strongly nonlinear and measurements difficult to obtain. However,
critical phenological events in the life history of organisms often oc-
cur when temperature regimes hover near these lower (or upper)
thresholds (Worner, 1992); for example, resumption of spruce bud-
worm development in the spring in temperate zones (Régnière et
al., 2010). To incorporate these critical events into realistic simula-
tions, the unimodal nature of developmental responses must be
accommodated by the models and accurate data on development
lopment dataset. The best model was Eq. (A6).

(A4) (A5) (A6) (A7)

Tb = 1.6 Tb = 4.6 Tb = 7.0 q25 = 0.248
Tm = 27.5 Tm = 28.7 Db = 0.02 H

A = 16783
Dm = 0.675 Dm = 1.035 Tm = 30.1 TL = 280.9
j = 1500 x = 0.0538 Dm = 4.4 HL = �69985
w = 0.831 w = 0.114 x = 0.256 TH = 301.1

w = 0.0237 HH = 100003
.180 0.181 0.180 0.182
0.116 0.106 0.046 0.120

56.4 55.4 51.3 56.8
126.9 124.8 118.7 129.7
128.6 126.5 120.8 131.9
7 7 8 8



Fig. 4. Mountain pine beetle development and oviposition data fitted to Eqs. (A6) and (21). Left column: development time. Middle column: development rate. Right column:
distribution of individual variation with corresponding lognormal distribution. s: uncensored; : censored observations. Last row: oviposition; (v) time to lay 95% of total
fecundity (days); (w) number of eggs laid on first day (s) and in first 10–16 days ( ); (x) female fecundity g.
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rates, survival and reproduction at several temperatures, including
extremes, are essential to predicting phenological events in a
fluctuating environment. Problems associated with measuring
development near thresholds can be circumvented by including
temperature transfer treatments between extreme and optimum
temperatures in experimental designs with a sufficient proportion
of the development taking place at the extreme temperature. Our
approach shows that censored data can also be used to achieve bet-
ter estimates.

The choice of an equation that describes adequately develop-
mental responses to temperature should be based on evidence of
unimodality in the data and prior information about the process
being modeled but not contained in the data being analyzed,
including thresholds. For actual unimodality to be apparent in



Table 5
Mountain pine beetle development and oviposition parameter estimates (Eqs. (A6) and (21)).

Parameter L1 L2 L3 L4 Pupa Teneral Oviposition

Tb 3.6 7.0 6.8 16.2 5.6 4.2 4.6
Db 0.1 0.10 0.10 0.04 0.11 0.10 0.10
Tm 29.3 28.9 28.7 28.0 (bound) 28.5 35 (bound) 27.8
Dm 3.8 3.0 2.5 4.6 2.9 7.1 3.1
x 0.240 0.371 0.440 0.259 0.153 0.146 0.368
w 0.01082 0.00642 0.00389 0.0503 0.0205 0.0117 0.0052
rd 0.2911 0.380 0.387 0.393 0.300 0.528 0.246
rt 0.365 0.171 0.321 0.211 0 0.190
F0 81.8

LL 138.7 240.3 349.3 121.8 52.9 176.4 853.1
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response data, a sufficient range and number of treatment temper-
atures must be available, especially for near-extreme temperatures
(both cold and warm). Our analysis of mountain pine beetle devel-
opment responses shows the importance of choosing an equation
that can describe the important features of the data. For example,
the use of Eq. (A6) allowed us to estimate precisely the lower
developmental threshold temperatures of the larval stages of cen-
tral importance to the synchronization of this insect’s seasonality
(Bentz et al., 1991; Powell et al., 2000).

Fitting complex equations using nonlinear least-squares and
treatment means or medians often leads to issues of over-
parameterization and convergence (Schoolfield et al., 1981). The
solution is to increase the number of treatments. Temperature
transfer treatments and the use of censored data make this
possible, although convergence remains an issue when the analysis
is based on maximum likelihood estimation. However, analyzing
development time data in two steps, first by fitting a model with
no lack-of-fit variance term and then by estimating r2

t using the
Fig. 5. Relationship between temperature and survival in (a–c) spruce budworm larvae (
1958). Daily survival rates described by (a) Eq. (30) and (d) Eq. (29). Mean developmen
results of that first step as initial parameter estimates, appears a
good solution. Our maximum-likelihood method uses data
from numerous individuals which increases the degrees of
freedom available to estimate model parameters. However, this
does not mean that it reduces the number of treatments needed
because there remain inflection-points (thresholds) which
sufficient data are essential to detect. There are two additional
advantages of the maximum-likelihood approach. First it resolves
the question of whether to fit an equation to development rates
or development times. Likelihoods are based on the probability
of observing life-stage transitions during each observation interval,
and parameter estimation must be based on the observed times.
Finally, having an explicit likelihood framework with common
error assumptions allows comparison of multiple rate models,
potentially representing different physiological hypotheses, via
the AIC.

The incorporation of the structure of variation in development
times and rates increases the power of process models. Results
data of Weber et al., 1999) and (d–f) melon fly eggs (data of Messenger and Flitters,
t time (b and e) described by Eq. (A7). Overall survival (c and f) from Eq. (28).
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obtained from the analysis methods described in this paper can be
applied directly to two of these approaches: individual-based and
cohort-based models. In individual-based models, development,
survival and oviposition are simulated for a collection of individuals,
each having its own assigned traits and going through successive
life stages at its own individual pace. At initiation, each individual
is assigned randomly different values of deviation from mean devel-
opment time for each life stage, according to the lognormal distribu-
tion. Lack-of-fit variation, because of its extrinsic nature, is not
modeled. Females in the reproductive stage are similarly assigned
an initial fecundity at random. Survival of an individual during each
time step is simulated by drawing a uniformly-distributed random
number and removing the individual if this number is larger than
the survival probability during that time step. One of the many
advantages of the individual-based approach is the simplicity with
which complex behaviors can be modeled. Among these, the trans-
mission of traits from parent to progeny (e.g., development rates)
offers the possibility of explicitly modeling natural selection.
Constraints of individual-based models resulting from their high
computing demands are diminishing with more powerful technol-
ogy and the use of solutions such as parallel processing or amalgam-
ating individuals into ‘‘super-individuals’’ that behave as cohorts
(Parry and Evans, 2008; Yurk and Powell, 2010).

A second approach that models insects in groups or cohorts has
been applied to many insect species (Curry et al., 1978; Logan,
1988). A cohort is a group of insects that enters a stage during a gi-
ven time interval, ages according to Eq. (2), survives over time
according to Eq. (27) and changes stage (passes to a new cohort)
according to some probability distribution. These probabilities
are determined by the cohort’s stage and physiological age a with-
in that stage. Sharpe et al. (1977) showed that the distributions of
development rates and times are interchangeable. This is espe-
cially true if the distribution is lognormal as assumed since d and
1/d have identical distributions. Cohort models tend to require less
computing power than individual-based models although both de-
pend equally on sample size. However, because individual traits
are not distinguished in cohort-based models, they are not as use-
ful to investigate evolutionary adaptation through the inheritance
of individual traits as individual-based models.

Phenology models driven by functional relationships between
insect development and ambient temperature are powerful tools
for scaling life history events of insects over wide spatial and tem-
poral scales and for analyzing insect responses to changing or novel
climatic conditions and provide insight for ecological inquiries at
the fine scale of host plant-insect synchrony and population
dynamics and at the broad scale of geographic distribution of spe-
cies (Bentz et al., 2010; Régnière et al., 2009, 2010; Safranyik
et al., 2010). This makes possible the analytic prediction of temper-
ature-dependent, emergent behavior in natural systems which are
outside the scope of empirical models of observed trends. Our ap-
proach makes possible more accurate and robust phenology models
based on the optimal use of available information, even when prac-
tical difficulties of obtaining measurements seem daunting. The
predictive capacity of these models enables both the validation of
the structure and the verification of predictions to increase confi-
dence in our ability to anticipate and understand population
changes in a variable and dynamic thermal environment.

We believe that the formulation of sound and complete ecolog-
ical theory around thermal responses requires that these responses
be completely described in terms not only of level (the b0 param-
eter of the UTD), but also of shape and temperature range. For
the results of such analyses to be comparable, it would also be
helpful to use a common expression with as few parameters as
possible. Perhaps the best candidate equation available at this time
for this purpose is the Sharpe–Schoolfield model, Eq. (A7) (Sharpe
and DeMichele, 1977; Schoolfield et al., 1981). This model has solid
roots in enzyme thermodynamics and has been well studied (de
Jong and van der Have, 2009). Its six parameters can be used to dis-
cuss the various critical aspects of species’ thermal responses. Its
use might facilitate the advancement of our understanding of the
evolution of thermal physiology (Angilletta et al., 2002) and spatial
patterns of fitness of ectotherms in response to climate (Deutsch
et al., 2008). A database of parameter values obtained by the meth-
ods described here for as many species as possible would consti-
tute a valuable contribution to such a discussion.
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Appendix A. SAS code example, western spruce budworm egg
development

data dataset;
input T1 time1 T2 time2 n censored;

⁄observations are made on a daily basis at all temperatures;
tm1 = time2 � 1;

datalines;
4.7 28 15.6 12 1 0
4.7 30 15.6 11 1 0
4.7 30 15.6 12 1 0
5.1 30 15.8 15 1 0
5.1 30 15.8 16 2 0
5.1 30 15.8 17 1 0
8.7 30 15.6 7 1 0
8.7 30 15.6 8 8 0
8.7 30 15.6 9 4 0
8.7 30 15.6 10 1 0
8.7 31 15.6 7 3 0
8.7 31 15.6 8 1 0
8.7 31 15.6 9 1 0
12.1 0 12.1 19 1 0
12.1 0 12.1 24 3 0
12.1 0 12.1 25 5 0
12.1 0 12.1 26 5 0
12.1 0 12.1 28 6 0
12.1 0 12.1 30 1 0
15.6 0 15.6 12 1 0
15.6 0 15.6 13 7 0
15.6 0 15.6 14 6 0
15.6 0 15.6 15 7 0
15.6 0 15.6 16 3 0
15.8 0 15.8 14 5 0
15.8 0 15.8 15 15 0
15.8 0 15.8 16 8 0
15.8 0 15.8 17 2 0
20.7 0 20.7 9 9 0
20.7 0 20.7 10 10 0
24.1 0 24.1 6 1 0
24.1 0 24.1 7 17 0
24.1 0 24.1 8 3 0
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28.0 0 28.0 5 4 0
28.0 0 28.0 6 15 0
;

⁄Data should be sorted by treatment (here T1) since upsilon is
a treatment-level random effect;
proc sort data = Dataset;

by T1;
run;

proc NLMIXED data = Dataset;
Title ‘‘Sharpe–Schoolfield (A7)’’;
parms
rho25 = 0.16
HA = 9831
TL = 284.5
HL = �59750
TH = 307.9
HH = 99935
s_eps = .07
s_upsilon = .03;

bounds TL P 273, TH 6 308, s_eps > 0, s_upsilon > 0;

se2 = �0.5 	 s_eps 	 s_eps;
⁄Development time at T1 (temperature transfers in the

design);
tK1 = T1 + 273;
num = rho25 	 tK1/298 	 EXP(HA/1.987 	 (1/298-1/tK1));
den1 = EXP(HL/1.987 	 (1/TL-1/tK1));
den2 = EXP(HH/1.987 	 (1/TH-1/tK1));
tau = 1/(num/(1 + den1 + den2));
tpred1 = upsilon 	 tau;

⁄Development time at T2 (temperature transfers in the
design);
tK2 = T2 + 273;
num = rho25 	 tK2/298 	 EXP(HA/1.987 	 (1/298-1/tK2));
den1 = EXP(HL/1.987 	 (1/TL-1/tK2));
den2 = EXP(HH/1.987 	 (1/TH-1/tK2));
tau = 1/(num/(1 + den1 + den2));
tpred2 = upsilon 	 tau;

⁄For the purpose of estimation, avoid predicted times lower
than 1 day;
if(tpred1 < 1) then tpred1 = 1;
if(tpred2 < 1) then tpred2 = 1;

⁄compute values of epsilon = log(delta);
epsm1 = log(time1/tpred1 + tm1/tpred2);
epsij = log(time1/tpred1 + time2/tpred2);

⁄Probability of epsilon ij (valid for all, including temperature
transfers and censoring);
p = (1-censored) 	 (cdf(’normal’,epsij,se2,s_eps)-
cdf(’normal’,epsm1,se2,s_eps))

+(censored) 	 (1-cdf(’normal’,epsij,se2,s_eps));
if(p > 1e�10) then ll = log(p);
else ll = log(1e�10);
model epsij � general(n 	 ll);
random upsilon � NORMAL(1,s_upsilon 	 s_upsilon)
subject = T1;

run;
Appendix B. SAS code example, spruce budworm larval survival
and development

data Weber_et_al_1999;
/	Data from Tables 2 and 3 in Weber, J. D., W. J. A. Volney, ans

J. R. Spence. 1999.
Environmental Entomology 28(2): 224-232	/
input Pop T nT Time Surv n;
Datalines;

1 9.3 2 107.5 4 25
1 11.2 9 83.4 11 29
1 13.2 13 60.2 14 29
1 15.0 23 44.5 24 35
1 18.5 35 25.4 38 44
1 24.0 16 24.1 21 28
1 26.0 30 17.4 31 39
1 29.0 13 15.4 21 37
1 31.0 10 14.3 22 34
1 33.0 4 22.3 16 30
2 11.2 8 78.9 10 37
2 13.2 5 63.6 10 26
2 15.0 19 46.7 25 35
2 18.5 13 28.9 15 21
2 24.0 18 18.8 24 35
2 26.0 13 18.8 18 24
2 29.0 8 16.1 11 31
2 31.0 3 16.0 11 29
3 9.3 2 75.5 2 16
3 11.2 8 79.0 10 30
3 13.2 13 60.8 15 24
3 15.0 20 44.7 23 38
3 18.5 21 29.2 22 24
3 24.0 16 21.4 22 29
3 26.0 35 20.3 38 55
3 29.0 15 17.3 31 62
3 31.0 11 16.2 23 46
3 33.0 5 15.8 25 43
4 11.2 12 82.7 22 52
4 13.2 29 61.2 38 62
4 15.0 22 41.1 31 41
4 18.5 37 28.6 42 49
4 24.0 10 21.6 13 17
4 26.0 40 16.5 41 48
4 29.0 17 15.9 32 40
4 31.0 19 17.0 33 48
4 33.0 2 22.0 11 33
5 11.2 7 87.9 8 35
5 13.2 14 59.6 18 43
5 15.0 28 40.8 30 46
5 18.5 29 28.7 31 49
5 24.0 44 18.5 48 62
5 26.0 12 17.2 16 36
5 29.0 14 16.0 22 38
5 31.0 15 15.7 21 43
5 33.0 5 17.8 18 53
6 9.3 6 97.3 7 17
6 11.2 2 73.5 3 12

(continued on next page)



646 J. Régnière et al. / Journal of Insect Physiology 58 (2012) 634–647
6 13.2 6 53.0 8 12
6 15.0 7 55.1 7 19
6 18.5 10 26.7 10 20
6 24.0 7 19.6 7 8
6 26.0 11 17.2 14 22
6 29.0 12 14.6 17 29
6 31.0 7 14.0 12 21
;

proc sort data=Weber_et_al_1999;
by pop T;

run;

/⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄
Analysis of survival rates

⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄/
proc NLMIXED data = Weber_et_al_1999;

Title ‘‘Weber et al (1999) survival rates (Eq. (24))’’;
parms

a = �4.9273
b = �0.004754
c = 0.000033
s_upsilon = .1;

bounds s_upsilon > 0;
gamma = 1/(1 + exp(a + b 	 T + c 	 T 		 2));
S = (gamma + upsilon) 		 Time;
expected = n 	 S;

model surv � Poisson(expected);

	upsilon is a Pop random effect;
random upsilon � NORMAL(0,s_upsilon 	 s_upsilon)
subject = Pop;

run;

/⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄
Analysis of development times

⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄/
proc NLMIXED data = Weber_et_al_1999;

Title ‘‘Weber et al (1999) development times’’;
parms

rho25 = 0.117
HA = 13476
HL = �60076
TL = 279.3

HH = 59946
TH = 304.1
s_delta = .5
s_upsilon = .1;

bounds s_upsilon > 0, s_delta > 0;

/	Sharpe–Schoolfield Eq. (A7)	/
TK = T + 273;
num = rho25 	 TK/298 	 EXP(HA/1.987 	 (1/298-1/TK));
den1 = EXP(HL/1.987 	 (1/TL-1/TK));
den2 = EXP(HH/1.987 	 (1/TH-1/TK));
tau = 1/(num/(1 + den1 + den2));

if(upsilon > 0) then delta_bar = time/(upsilon 	 tau);
else delta_bar = 1000; /	Some non-sensical value	/

model delta_bar � normal(1,s_delta 	 s_delta/n);
random upsilon � normal(1,s_upsilon 	 s_upsilon)
subject = Pop;

run;
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