FACULTY SENATE MINUTES
November 5, 2018
3:00 – 5:00 pm
Merrill-Cazier Library, Room 154

Call to Order - Becki Lawver
Approval of the October 1, 2018 Minutes
Minutes approved as distributed.

University Business - Frank Galey, Provost
The Provost is working with a new General Education Task Force. Faculty are being included and involved in this task force. Lee Rickords, Chair of the General Education subcommittee is also a member. The task force was put together due to a non-conformance issue during USU’s accreditation review. The concerns are not so much with Communication Intensive and Quantitative Intensive courses but more with the depth and breadth courses. The task force will assess all General Education designations/courses and they hope to have a minimal impact on faculty who teach those classes. The report back to the accrediting body is due next fall. Looking at developing a system to assist in these reviews/assessments. Once a system is in place some faculty may be asked to help with the beta test.

The Title IX Coordinator and AA/EO Director searches are warpping up. The Provost met with the Title IX search chair, Nick Morrison who stated that they are close to making a decision. The search committees are hoping to have interviews completed in the next week or so. Received permission from the President to add two new positions to help with investigations and assist with certain accommodations. These additions will afford more timeliness of reporting and investigations. The goal is approachability and accessibility for faculty, students and staff. The new leadership will be identified and announced shortly.

The Caine College of the Arts Dean search is underway and the search committee is chaired by Beth Foley. If faculty know of anyone who would be a great candidate please contact Ed Reeve.

Soon will be moving forward with the graduate studies changes.

Information
Faculty Forum – November 12, 2018 - Becki Lawver
Topics have been specified but the forum will be open for other topics of discussion. Topics include:

- Faculty Responsibility
- Carnegie Community Engagement
- Resolution on USU Greenhouse Gas Emissions

EPC Monthly Report – October 4, 2018 - Edward Reeve
123 semester course approvals were approved.
Four R401 program proposals were approved.
General Education – no report/action
Academic Standards – no report/action

Reports
Libraries Advisory Council Annual Report - Bryce Fifield
The Libraries Advisory Council is made up of representatives from each academic college and also includes Faculty Senate representatives. The incoming chair writes the report for the previous year. One persistent item is the inflation of cost in periodicals. These costs are steadily going up where Library resources are remaining flat.

Old Business

Code 405.11.4 - External Reviewers (second reading) - Britt Fagerheim
One error shows the same sentence being repeated. One of the sentences will be removed. The committee requested language. Updated the code number because it was referring to the promotion code and this is now updated to the tenure code.

Remove language that would require a definition of “high regard”. This description was used to replace “respected”. Suggestion to use a more grammatically correct term for respected, i.e., respected member in the academic community or use a term that is quantifiable, i.e., accomplished.

Motion to send code back to the PRPC Committee made by David Farrelly. Seconded by Kimberly Lott. Code sent back to PRPC.

PRPC actions:
- Delete repeated sentence
- Use words like: “accomplished” or “in good standing”
- Better grammatical term for respect
- Provide a functional equivalent

New Business

Proposal to Develop USU Greenhouse Gas Emissions Resolution - Patrick Belmont (IPCC Report)
In 2007 President Albrecht signed the American College and University President’s Climate Commitment (ACUPCC) that states that USU will become carbon neutral by the year 2050.

One aspect of achieving the goals is to work on building more energy efficient buildings. All new buildings with the exception of garages are LEED (Leadership in Energy and Environmental Design). Faculty are voluntarily including sustainability in their courses. Both faculty and students are working on developing efficiencies and making a difference in climate change. Approximately 5000 students are taught by one of the Planetary Thinking Professors each year. Compared to other universities we are doing well and we are doing extremely well in regards to water conservation.

Patrick Belmont would like to work with a group of 25 senators to write a resolution regarding Greenhouse Gas emissions. This is not a presidential appointed resolution committee. If faculty senators are interested in assisting in the resolution, they can contact Patrick Belmont.

Alexi Lamm provided a brief presentation showing that the university is attempting to reduce the amount of waste/gases that we are putting into the atmosphere. A lot of things are happening but there are still a lot of things that need to be done. Some of the older buildings need to be retrofitted and updates need to be done so that energy costs will go down. Some projects are also being done at the Regional Campuses and it appears that they are the best candidates for solar.

Adjourn: 3:56 pm
FACULTY SENATE MINUTES
October 1, 2018
3:00 – 5:00 pm
Merrill-Cazier Library, Room 154

Call to Order - Kimberly Lott
Approval of September 10, 2018 Minutes
Minutes approved as distributed.

University Business - Frank Galey, Provost
The AAEO office is conducting searches for a Title IX Coordinator and an AA/EO/Title IX Director. The Title IX search is likely going to be readvertised and Dale Andersen and Mica McKinney will help out the office and work through any issues that come up. President Cockett sent out a note regarding the music program and she emphasized that USU takes these allegations very seriously. There is an independent counsel working on this latest issue involving Professor Hirst. The professor’s teaching assignments have been redistributed. We are working on the General Education program at USU as this was an issue raised by the accreditation team. USU needs to do a better job assessing the overall program including depth and breadth courses. A task force has been pulled together and includes Lee Rickords who is chair of the General Education Committee. This will be a meaningful process and we will make sure that it has minimal impact on the faculty members. If faculty have any ideas on how this can be done they will need to go through the General Education subcommittee by contacting Lee Rickords.

Classification regarding the Carnegie Community Engagement. Currently we are working with a writing group to submit an application to Carnegie on behalf of USU. This application process is only done every five years. A Qualtrics survey was send out and everyone was asked to pay attention and complete the survey. There has been an overwhelming response up to this point.

Information

EPC Monthly Report – September 6, 2018 – Nicholas Morrison
General Education – nothing to report
Academic Standards – nothing to report
13 Course approval requests were approved
Three R401 program proposals were approved

Reports

EPC Annual Report – Nicholas Morrison
776 Course approval requests for the 2017-2018 academic year
29 R401 program proposals
Added a section of “course objectives” in Curriculog for semester course approvals
Approval of a “Syllabus Tools” in CANVAS
27 General Education designations were approved
Discontinued the 15-year statute of limitations for General Education coursework at USU
Approved registered students policy
Approved Language for Final Examinations and No-Test Days policy
Approved Student Code revision
Motion to approve the EPC Annual Report made by Matt Omasta. Seconded by Ralph Meyer. Report approved.

Honors Annual Report - Kristine Miller
Currently the Honors program has 722 honors students and they are engaged with over 500 faculty. This collaboration provides Honors students with unique experiences. As we talk nationally about what is going on at other institutions, we find that we are on the cutting edge of Honors programs. Some key things that are happening is having faculty use standardized sheets and include these Honors experiences as part of their promotion and tenure submissions as well as developing an alumni mentoring program that will let them connect over the years. Retention and graduation rates are about one quarter of each class.

Motion to approve the Honors Annual Report made by Bryce Fifield. Seconded by Timothy Taylor. Report approved.

New Business

Faculty Senate Meeting Time Change – Kimberly Lott
The Faculty Senate Executive Committee moved its start time to 3:30 pm. This change does not require a faculty code change. However, if the Faculty Senate wanted to change its start it would require a code change. (See class/bell schedule) It the meetings were go past 5:00 pm it would be difficult for parents who have to pick up children an d moving the meetings to Tuesday for Thursdays would cause even more conflicts. Student representatives have meetings at 4:00 pm. A non-binding straw poll was taken.

Motion to have a non-binding straw poll made by Ben George. Seconded by Jaren Hunsaker.

Leave meeting at 3:00 pm – 32 in favor

Move earlier or later – 6 in favor

Either option - 10 in favor

We will pull together a more detailed proposal regarding this item.

Code 403.3.1 Standards of Conduct-Faculty Responsibilities to Student - Kimberly Lott
President Cockett and Interim Provost Smith asked that the Faculty Senate President examine code 403 in regards to what has happened in the piano program. PRPC is the official writer of code and they will be instrumental in bringing forth the recommended code changes.

Consideration into what capacity and in what modes of speech faculty use in social media. Some comments can/may be misconstrued. Personal interpretation can come into play with the faculty or the students.

The following questions came out of this discussion:

- Do we define any of these terms anywhere else?
- Is grading considered discriminatory?
- Is this a failure in the existing process and will changing the verbage make any difference?

Similarly PRPC needs to include clear definitions of intimidation and humiliation. Students could come up with any reason for mistreatment so there needs to be a clear understanding. PRPC is being asked to address details and definitions. Voting to move code to PRPC, not voting on actual wording today. The proposed changes are just suggestions. Frame this into something more positive like define the terms. Also take into account that this is not going to solve all problems. Make this a little more inspiring. Focused look on defining discrimination and harassment. Move only #11 forward and not #12. In #11 add abuse. Combine #11 and #12. Do not abuse or exploit international students.

Motion to send Code 403.3.1 to PRPC made by Matt Omasta. Seconded by Ralph Meyer.
Moved to PRPC

44 – in favor
2 – not in favor
Code 403.3.2 Standards of Conduct-Professional Obligations - Kimberly Lott
It was noted that sometimes critics of other’s work is not always friendly and disagreements do arise. We need to think about broadening the language to include others than just employees and faculty, i.e., volunteers, etc. Look at a different approach as this verbage may or may not change the problem.

The questions were asked:
- Why didn’t the processes fix this before?
- What will make the university run better?
- What can we do looking forward?

Take a more focused look at what we do and don’t want to happen with our faculty. Follow-up with punitive actions that can/will be taken with individuals. Do #10 but not #11. This is a proactive action.

Motion to send Code 403.3.2 to PRPC made by Patrick Belmont. Seconded by Dan Holland. Moved to PRPC.
38 – in favor
5 – not in favor

Code 407.1.1 Non-punitive Measures - Kimberly Lott
Different levels of reprimand.
Motion to send to PRPC made by Victor Lee. Seecond by Steve Daniels. Moved to PRPC.

Code 407.11.2 Inquiry into Allegations of Violation Policies 407.8 and/or 407.9 - Kimberly Lott
Big difference in tone into what is stricken vs. the new version. This will be a default response. In the stricken there is a fair amount of detail regarding due process check. The Provost is usually the one representing the academic end of the university. The word harm needs to be defined. Taking the stricken part out removes the only time the word “harm” is used. Harm to students and faculty as well.

Motion to move to PRPC made by Bryce Fifield. Seconded by Corey Christiansen. Moved to PRPC.
40 – in favor
1 – not in favor
1 - abstain

Code 407.11.3 Protection of Complainant and Others - Kimberly Lott

Motion to move to PRPC made by Bryce Fifield. Seconded by Corey Christiansen. Moved to PRPC.

Old Business

Nominating Committee Code - Kimberly Lott
Creating a new committee to help with election of the Faculty Senate president-elect. Talked at FSEC and after lengthy conversation we decided to table indefinitely. Not doing anything with this right now. Trying to make some informal changes to help with this.

Adjourn 4:20 pm
The Educational Policies Committee (EPC) met on October 4, 2018. The agenda and minutes of the meeting are posted on the Educational Policies Committee web page (www.usu.edu/epc).

During the October 4, 2018, meeting of the EPC, the following actions were taken:

1. **General Education Subcommittee**
 - No Action Items. Discussion presented on the Northwest Commission on Colleges and Universities (NWCCU) Accreditation Review and General Education

2. **Academic Standards Subcommittee**
 - No Report.

3. **Curriculum Subcommittee**
 - Approval of 123-course requests.
 - Approval of a request from the Department of History in the College of Humanities and Social Sciences to offer a Masters in Ancient Languages and Cultures.
 - Approvals of the request from the Department of English in the College of Humanities and Social Sciences to change the name from American Studies to Folklore and American Studies. Restructure Folklore and American Studies.
 - Approval of the request the Department of Languages, Philosophy and Communication Studies in the College of Humanities and Social Sciences to offer a Baccalaureate degree in Chinese.
 - Table the request from the Department of Sociology, Social Work and Anthropology in the College of Humanities and Social Sciences to establish an I-System Institute for Transdisciplinary Studies.
University Libraries Advisory Council

Report to the Utah State University Faculty Senate
October 2018

Charge
The University Libraries Advisory Council advises the Vice-Provost for University Libraries and Instructional Support in (1) meeting the learning, instruction, and research needs of students, faculty and staff; (2) formulating library policies in relation to circulation, services, and the collection development of resources for instruction and research; and (3) interpreting the needs and policies of the libraries to the University. The Council membership consists of nine faculty members, one from each College and Extension with one undergraduate and graduate student appointed by the Provost. Faculty members serve three-year terms and are renewable once. The Vice-Provost for University Libraries and Instructional Support serves as an ex-officio, non-voting member. The chair is elected from the Council membership on an annual basis. (https://www.usu.edu/policies/105/, accessed September 20, 2018).

Council Members (2017-2018)
Council members who served during the 2017-2018 academic year included: David Wall, Caine College of the Arts, Chair; Charles Miller, College of Engineering; Susanne Janecke, College of Science; Bryce Fifield, Emma Eccles Jones College of Education and Human Services; Travis Dowdle, USUSU Science Senator; Anuj Khasgiwala, Graduate Student Senator; Steven Hanks, Huntsman School of Business; Amanda, College of Agriculture and Extension; Christine Cooper-Rompano, College of Humanities and Social Sciences; Peter Adler, College of Natural Resources; Dean Brad Cole, Ex-officio, Libraries and Instructional Support.

2017-2018 Activities
The Library Advisory Council met twice during the 2017-2018 academic year. Key topics addressed included the following:

The expansion of student digital exhibits to involve more faculty and students. The purpose of the digital exhibits initiative is to encourage faculty to think differently about research assignments and outputs and to encourage students to interact directly with primary resources. Student digital exhibits are available at http://exhibits.usu.edu/exhibits.

The challenges of meeting the increasing costs of journal costs with existing fee and funding structures. Last year, there was an inflationary increase of $275,000 and is expected to exceed $300,000 next year. Council members provided input on several cost-reducing strategies. Council members also solicited input from their colleges and academic departments on the impact of cancelling selected journal packages.
Council members participated in and provided input into the Library’s strategic planning process. The involvement of Library employees, faculty, researchers, students, and other stakeholders is identifying a number of possible strategic areas and initiatives. Library staff participated in departmental retreats this fall and conducted a faculty survey. From these sources, Library staff, with input from the Council are selecting five or six critical issues to address over the coming year.

Council members provided input into a number of Library services, programs, and resources including The Human Library, availability of a remote book drop, support for student research, inservice resources for new and existing faculty, and development/fundraising efforts. An ongoing issue is the difficulty of informing students, faculty, and other campus constituents about the availability of Library services and resources. Council members have provided suggestions about possible communication strategies and in turn are encouraged to communicate with their own academic units about these issues.
Additional Events During the Year in which a Tenure Decision is to be Made

(1) External peer reviews.

Prior to September 15, the department head or supervisor will make a solicitation of letters from at least four peers of rank equivalent to or higher than that sought by the candidate. If fewer than four letters arrive, additional letters will be solicited only to attain the minimum of four letters.

The reviewers must be external to the university and must be held with respect in academe. The candidate will be asked to submit the names of potential reviewers and to state the nature of his or her acquaintance with each of them. The number of names should be at least equal to the number of letters to be solicited. At least one-half of the reviewers must be selected from the candidate’s list. The candidate may also submit names of potential reviewers that he or she does not want contacted, although this list is not binding on the department head or supervisor.

The department head or supervisor and the tenure advisory committee shall mutually agree to the peer reviewers from whom letters will be solicited. A summary of the pertinent information in his or her file initially prepared by the candidate and a cover letter initially drafted by the department head or supervisor with final drafts mutually agreed upon by the candidate, the tenure advisory committee, and the department head or supervisor shall be sent to each reviewer by the department head or supervisor. Each external reviewer should be asked to state, the nature of his or her acquaintance with the candidate and to evaluate the performance, record, accomplishments, recognition and standing of the candidate in the major area of emphasis of his or her role statement. If the candidate, department head, and tenure advisory committee all agree, external reviewers may be asked to evaluate the secondary area of emphasis in the role statement as well. Copies of these letters will become supplementary material to the candidate’s file (see Code 405.6.3).

Under exceptional circumstances, a waiver of the external review process may be granted by the president when such a process is operationally not feasible for a particular set of academic titles and ranks.

Proposed Code Change:

(1) External peer reviews.

Prior to September 15, the department head or supervisor will make a solicitation of letters from at least four peers of rank equivalent to or higher than that sought by the candidate. If fewer than four letters arrive, additional letters will be solicited only to attain the minimum of four letters.

The candidate will be asked to submit the names of potential reviewers and to state the nature of his or her acquaintance with each of them. The reviewers must be external to the university and must be held in high regard by the academic community. The reviewers must be external to the university and must be held in high regard by the academic community. These persons should be familiar with the candidate’s field of study and may know the candidate. But those with potential
conflicts of interest should not be asked to serve as a reviewer, but the reviewer must be far enough removed from the candidate as to avoid a conflict of interest. A candidate may be asked to submit additional names if it is decided that the nature of the candidate’s acquaintance with the potential reviewers might prevent them from making an objective evaluation. The number of names should be at least equal to the number of letters to be solicited. At least one-half of the reviewers must be selected from the candidate’s list. The candidate may also submit names of potential reviewers that he or she does not want contacted, although this list is not binding on the department head or supervisor.

The department head or supervisor and the tenure advisory committee shall mutually agree to the peer reviewers from whom letters will be solicited to ensure an objective appraisal of the candidate’s file. A summary of the pertinent information in his or her file initially prepared by the candidate and a cover letter initially drafted by the department head or supervisor with final drafts mutually agreed upon by the candidate, the tenure advisory committee, and the department head or supervisor shall be sent to each reviewer by the department head or supervisor. Each external reviewer should be asked to state (i) the nature of his or her acquaintance with the candidate, and (ii) if any potential conflicts of interest exist. External reviewers will be asked to evaluate the performance, record, accomplishments, recognition and standing of the candidate in the major area of emphasis of his or her role statement. Each external reviewer should be asked to state, the nature of his or her acquaintance with the candidate and to evaluate the performance, record, accomplishments, recognition and standing of the candidate in the major area of emphasis of his or her role statement. If the candidate, department head, and tenure advisory committee all agree, external reviewers may be asked to evaluate the secondary area of emphasis in the role statement as well. Copies of these letters will become supplementary material to the candidate’s file (see Code 405.6.3).

Under exceptional circumstances, a waiver of the external review process may be granted by the president when such a process is operationally not feasible for a particular set of academic titles and ranks.
GLOBAL WARMING OF 1.5 °C

an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

Summary for Policymakers

This Summary for Policymakers was formally approved at the First Joint Session of Working Groups I, II and III of the IPCC and accepted by the 48th Session of the IPCC, Incheon, Republic of Korea, 6 October 2018.

SUBJECT TO COPY EDIT
Summary for Policymakers

Drafting Authors: Myles Allen (UK), Mustafa Babiker (Sudan), Yang Chen (China), Heleen de Coninck (Netherlands), Sarah Connors (UK), Renée van Diemen (Netherlands), Opha Pauline Dube (Botswana), Kris Ebi (USA), Francois Engelbrecht (South Africa), Marion Ferrat (UK/France), James Ford (UK), Piers Forster (UK), Sabine Fuss (Germany), Tania Guillian (Germany/Nicaragua), Jordan Harold (UK), Ove Hoegh-Guldberg (Australia), Jean-Charles Hourcade (France), Daniel Huppmann (Austria), Daniela Jacob (Germany), Kejun Jiang (China), Tom Gabriel Johansen (Norway), Mikiko Kainuma (Japan), Kiane de Kleijne (Netherlands), Elmar Kriegler (Germany), Debora Ley (Guatemala/Mexico), Diana Liverman (USA), Natalie Mahowald (USA), Valérie Masson-Delmotte (France), Robin Matthews (UK), Reinhard Melcher (Austria), Richard Millar (UK), Katja Mintenbeck (Germany), Angela Morelli (Norway/Italy), Wilfran Moufouma-Okia (France/Congo), Luis Mundaca (Sweden/Chile), Maike Nicolai (Germany), Chukwumerije Okereke (UK/Nigeria), Minal Pathak (India), Anthony Payne (UK), Roz Pidcock (UK), Anna Pirani (Italy), Elvira Poloczanska (UK/Australia), Hans-Otto Pörtner (Germany), Aromar Revi (India), Keywan Riahi (Austria), Debra C. Roberts (South Africa), Joeri Rogelj (Austria/Belgium), Joyashree Roy (India), Sonia Seneviratne (Switzerland), Priyadarshri R. Shukla (India), James Skea (UK), Raphael Slade (UK), Drew Shindell (USA), Chandni Singh (India), William Solecki (USA), Linda Steg (Netherlands), Michael Taylor (Jamaica), Petra Tschakert (Australia/Austria), Henri Waisman (France), Rachel Warren (UK), Panmao Zhai (China), Kirsten Zickfeld (Canada)

Acknowledgements
We are very grateful for the expertise, rigour and dedication shown throughout by the volunteer Coordinating Lead Authors and Lead Authors, with important help by the many Contributing Authors. Working across scientific disciplines in each chapter of the Special Report on Global Warming of 1.5°C. The Review Editors have played a critical role in assisting the author teams and ensuring the integrity of the review process. We express our sincere appreciation to all the expert and government reviewers. A special thanks goes to the Chapter Scientists of this report who went above and beyond what was expected of them: Neville Ellis, Tania Guillén Bolaños, Daniel Huppmann, Kiane de Kleijne, Richard Millar and Chandni Singh.

We would also like to thank the three IPCC Vice-Chairs Ko Barrett, Thelma Krug, and Youba Sokona as well as the members of the WGI, WGII and WGIII Bureaus for their assistance, guidance, and wisdom throughout the preparation of the report: Amjad Abdulla, Edvin Aldrian, Carlo Carraro, Diriba Korecha Dadi, Fatima Driouech, Andreas Fischlin, Gregory Flato, Jan Fuglestvedt, Mark Howden, Nagmeldin G. E. Mahmoud, Carlos Mendez, Joy Jacqueline Pereira, Ramón Pichs-Madruga, Andy Reisinger, Roberto Sánchez Rodriguez, Sergey Semenov, Muhammad I. Tariq, Diana Űrge-Vorsatz, Carolina Vera, Pius Yanda, Noureddine Yassaa, and Taha Zatari.

Our heartfelt thanks go to the hosts and organizers of the scoping meeting and the four Special Report on 1.5°C Lead Author Meetings. We gratefully acknowledge the support from the host countries and institutions: World Meteorological Organisation, Switzerland; Ministry of Foreign
Affairs, and the National Institute for Space Research (INPE), Brazil; Met Office and the University of Exeter, The United Kingdom; Swedish Meteorological and Hydrological Institute (SMHI), Sweden; the Ministry of Environment Natural Resources Conservation and Tourism, the National Climate Change Committee in the Department of Meteorological Services and the Botswana Global Environmental Change Committee at the University of Botswana, Botswana; and the government of the Republic of Korea. The support provided by governments and institutions, as well as through contributions to the IPCC Trust Fund, is thankfully acknowledged as it enabled the participation of the author teams in the preparation of the report. The efficient operation of the Working Group I Technical Support Unit was made possible by the generous financial support provided by the government of France and administrative and information technology support from the University Paris Saclay (France), Institut Pierre Simon Laplace (IPSL) and the Laboratoire des Sciences du Climat et de l’Environnement (LSCE). We thank the Norwegian Environment Agency for supporting the preparation of the graphics for the Summary for Policymakers.

We would also like to thank Abdalah Moksiit, Secretary of the IPCC, and the staff of the IPCC Secretariat: Kerstin Stendahl, Jonathan Lynn, Sophie Schlingemann, Judith Ewa, Mxolisi Shongwe, Jesbin Baidya, Werani Zabula, Nina Peeva, Joelle Fernandez, Annie Courtin, Laura Biagioni and Oksana Ekzarho. Thanks are due to Elhousseine Gouaini who served as the conference officer for the 48th Session of the IPCC.

Finally, our particular appreciation goes to the Working Group Technical Support Units whose tireless dedication, professionalism and enthusiasm led the production of this special report. This report could not have been prepared without the commitment of members of the Working Group I Technical Support Unit, all new to the IPCC, who rose to the unprecedented AR6 challenge, and were pivotal in all aspects of the preparation of the report: Yang Chen, Sarah Connors, Melissa Gomez, Elisabeth Lonnoy, Robin Matthews, Wilfran-Moufouma-Okia, Clotilde Péan, Roz Pidcock, Anna Pirani, Nicholas Reay, Tim Waterfield, and Xiao Zhou. Our warmest thanks go to the collegial and collaborative support provided by Marlies Craig, Andrew Okem, Jan Petzold, Melinda Tignor and Nora Weyer from the WGII Technical Support Unit and Bhushan Kankal, Suvadip Neogi, Joana Portugal Pereira from the WGIII Technical Support Unit. A special thanks goes to Kenny Coventry, Harmen Gudde, Irene Lorenzoni, and Steve Jenkins for their support with the figures in the Summary for Policymakers, as well as Nigel Hawtin for graphical support of the report. In addition, the following contributions are gratefully acknowledged: Tom Maycock (operational support and copy edit), Jatinder Padda (copy edit), Melissa Dawes (copy edit), Marilyn Anderson (index), Vincent Grégoire (layout) and Sarah le Rouzic (intern).

Date of Summary for Policymakers: 6 October 2018
Introduction

This report responds to the invitation for IPCC ‘... to provide a Special Report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways’ contained in the Decision of the 21st Conference of Parties of the United Nations Framework Convention on Climate Change to adopt the Paris Agreement.¹

The IPCC accepted the invitation in April 2016, deciding to prepare this Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

This Summary for Policy Makers (SPM) presents the key findings of the Special Report, based on the assessment of the available scientific, technical and socio-economic literature² relevant to global warming of 1.5°C and for the comparison between global warming of 1.5°C and 2°C above pre-industrial levels. The level of confidence associated with each key finding is reported using the IPCC calibrated language.³ The underlying scientific basis of each key finding is indicated by references provided to chapter elements. In the SPM, knowledge gaps are identified associated with the underlying chapters of the report.

¹ Decision 1/CP.21, paragraph 21.
² The assessment covers literature accepted for publication by 15 May 2018.
³ Each finding is grounded in an evaluation of underlying evidence and agreement. A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and typeset in italics, for example, medium confidence. The following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely 90–100%, likely 66–100%, about as likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%, exceptionally unlikely 0–1%. Additional terms (extremely likely 95–100%, more likely than not >50–100%, more unlikely than likely 0–<50%, extremely unlikely 0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics, for example, very likely. This is consistent with AR5.
A. Understanding Global Warming of 1.5°C

A1. Human activities are estimated to have caused approximately 1.0°C of global warming above pre-industrial levels, with a likely range of 0.8°C to 1.2°C. Global warming is likely to reach 1.5°C between 2030 and 2052 if it continues to increase at the current rate. (high confidence) {1.2, Figure SPM.1}

A1.1. Reflecting the long-term warming trend since pre-industrial times, observed global mean surface temperature (GMST) for the decade 2006–2015 was 0.87°C (likely between 0.75°C and 0.99°C) higher than the average over the 1850–1900 period (very high confidence). Estimated anthropogenic global warming matches the level of observed warming to within ±20% (likely range). Estimated anthropogenic global warming is currently increasing at 0.2°C (likely between 0.1°C and 0.3°C) per decade due to past and ongoing emissions (high confidence). {1.2.1, Table 1.1, 1.2.4}

A1.2. Warming greater than the global annual average is being experienced in many land regions and seasons, including two to three times higher in the Arctic. Warming is generally higher over land than over the ocean. (high confidence) {1.2.1, 1.2.2, Figure 1.1, Figure 1.3, 3.3.1, 3.3.2}

A1.3. Trends in intensity and frequency of some climate and weather extremes have been detected over time spans during which about 0.5°C of global warming occurred (medium confidence). This assessment is based on several lines of evidence, including attribution studies for changes in extremes since 1950. {3.3.1, 3.3.2, 3.3.3}

A2. Warming from anthropogenic emissions from the pre-industrial period to the present will persist for centuries to millennia and will continue to cause further long-term changes in the climate system, such as sea level rise, with associated impacts (high confidence), but these emissions alone are unlikely to cause global warming of 1.5°C (medium confidence) {1.2, 3.3, Figure 1.5, Figure SPM.1}

A2.1. Anthropogenic emissions (including greenhouse gases, aerosols and their precursors) up to the present are unlikely to cause further warming of more than 0.5°C over the next two to three decades (high confidence) or on a century time scale (medium confidence). {1.2.4, Figure 1.5}

4 SPM BOX.1: Core Concepts

5 Present level of global warming is defined as the average of a 30-year period centered on 2017 assuming the recent rate of warming continues.

6 This range spans the four available peer-reviewed estimates of the observed GMST change and also accounts for additional uncertainty due to possible short-term natural variability. {1.2.1, Table 1.1}
A2.2. Reaching and sustaining net-zero global anthropogenic CO₂ emissions and declining net non-CO₂ radiative forcing would halt anthropogenic global warming on multi-decadal timescales *(high confidence)*. The maximum temperature reached is then determined by cumulative net global anthropogenic CO₂ emissions up to the time of net zero CO₂ emissions *(high confidence)* and the level of non-CO₂ radiative forcing in the decades prior to the time that maximum temperatures are reached *(medium confidence)*. On longer timescales, sustained net negative global anthropogenic CO₂ emissions and/or further reductions in non-CO₂ radiative forcing may still be required to prevent further warming due to Earth system feedbacks and reverse ocean acidification *(medium confidence)* and will be required to minimise sea level rise *(high confidence)*. {Cross-Chapter Box 2 in Chapter 1, 1.2.3, 1.2.4, Figure 1.4, 2.2.1, 2.2.2, 3.4.4.8, 3.4.5.1, 3.6.3.2}
Cumulative emissions of CO₂ and future non-CO₂ radiative forcing determine the probability of limiting warming to 1.5°C

a) Observed global temperature change and modeled responses to stylized anthropogenic emission and forcing pathways

Global warming relative to 1850-1900 (°C)

b) Stylized net global CO₂ emission pathways

CO₂ emissions decline from 2020 to reach net zero in 2055 or 2040

Faster immediate CO₂ emission reductions limit cumulative CO₂ emissions shown in panel (c).

c) Cumulative net CO₂ emissions

Cumulative CO₂ emissions in pathways reaching net zero in 2055 and 2040

Maximum temperature rise is determined by cumulative net CO₂ emissions and net non-CO₂ radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

d) Non-CO₂ radiative forcing pathways

Non-CO₂ radiative forcing reduced after 2030 or not reduced after 2030

Faster CO₂ reductions (blue in b & c) result in a higher probability of limiting warming to 1.5°C. No reduction of net non-CO₂ radiative forcing (purple in d) results in a lower probability of limiting warming to 1.5°C.

Likely range of modeled responses to stylized pathways

Global CO₂ emissions reach net zero in 2055 while net non-CO₂ radiative forcing is reduced after 2030 (grey in b, c & d).
Figure SPM.1: Panel a: Observed monthly global mean surface temperature (GMST) change grey line up to 2017, from the HadCRUT4, GISTEMP, Cowtan–Way, and NOAA datasets) and estimated anthropogenic global warming (solid orange line up to 2017, with orange shading indicating assessed likely range). Orange dashed arrow and horizontal orange error bar show respectively central estimate and likely range of the time at which 1.5°C is reached if the current rate of warming continues. The grey plume on the right of Panel a) shows the likely range of warming responses, computed with a simple climate model, to a stylized pathway (hypothetical future) in which net CO₂ emissions (grey line in panels b and c) decline in a straight line from 2020 to reach net zero in 2055 and net non-CO₂ radiative forcing (grey line in panel d) increases to 2030 and then declines. The blue plume in panel a) shows the response to faster CO₂ emissions reductions (blue line in panel b), reaching net zero in 2040, reducing cumulative CO₂ emissions (panel c). The purple plume shows the response to net CO₂ emissions declining to zero in 2055, with net non-CO₂ forcing remaining constant after 2030. The vertical error bars on right of panel a) show the likely ranges (thin lines) and central terciles (33rd – 66th percentiles, thick lines) of the estimated distribution of warming in 2100 under these three stylized pathways. Vertical dotted error bars in panels b, c and d show the likely range of historical annual and cumulative global net CO₂ emissions in 2017 (data from the Global Carbon Project) and of net non-CO₂ radiative forcing in 2011 from AR5, respectively. Vertical axes in panels c and d are scaled to represent approximately equal effects on GMST. \{1.2.1, 1.2.3, 1.2.4, 2.3, Chapter 1 Figure 1.2 & Chapter 1 Supplementary Material, Cross-Chapter Box 2\}
A3. Climate-related risks for natural and human systems are higher for global warming of 1.5°C than at present, but lower than at 2°C (high confidence). These risks depend on the magnitude and rate of warming, geographic location, levels of development and vulnerability, and on the choices and implementation of adaptation and mitigation options (high confidence) (Figure SPM.2). {1.3, 3.3, 3.4, 5.6}

A3.1. Impacts on natural and human systems from global warming have already been observed (high confidence). Many land and ocean ecosystems and some of the services they provide have already changed due to global warming (high confidence). {1.4, 3.4, 3.5, Figure SPM.2}

A3.2. Future climate-related risks depend on the rate, peak and duration of warming. In the aggregate they are larger if global warming exceeds 1.5°C before returning to that level by 2100 than if global warming gradually stabilizes at 1.5°C, especially if the peak temperature is high (e.g., about 2°C) (high confidence). Some impacts may be long-lasting or irreversible, such as the loss of some ecosystems (high confidence). {3.2, 3.4.4, 3.6.3, Cross-Chapter Box 8}

A3.3. Adaptation and mitigation are already occurring (high confidence). Future climate-related risks would be reduced by the upscaling and acceleration of far-reaching, multi-level and cross-sectoral climate mitigation and by both incremental and transformational adaptation (high confidence). {1.2, 1.3, Table 3.5, 4.2.2, Cross-Chapter Box 9 in Chapter 4, Box 4.2, Box 4.3, Box 4.6, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5, 4.4.1, 4.4.4, 4.4.5, 4.5.3}

B. Projected Climate Change, Potential Impacts and Associated Risks

B1. Climate models project robust7 differences in regional climate characteristics between present-day and global warming of 1.5°C,8 and between 1.5°C and 2°C.8 These differences include increases in: mean temperature in most land and ocean regions (high confidence), hot extremes in most inhabited regions (high confidence), heavy precipitation in several regions (medium confidence), and the probability of drought and precipitation deficits in some regions (medium confidence). {3.3}

B1.1. Evidence from attributed changes in some climate and weather extremes for a global warming of about 0.5°C supports the assessment that an additional 0.5°C of warming compared to present is associated with further detectable changes in these extremes (medium confidence). Several regional changes in climate are assessed to occur with global warming up to 1.5°C compared to pre-industrial levels, including warming of extreme temperatures in many regions (high confidence), increases in frequency, intensity, and/or amount of heavy precipitation in several regions (high confidence), and an increase in intensity or frequency of droughts in some regions (medium confidence). {3.2, 3.3.1, 3.3.2, 3.3.3, 3.3.4, Table 3.2}

B1.2. Temperature extremes on land are projected to warm more than GMST (high confidence): extreme hot days in mid-latitudes warm by up to about 3°C at global warming of 1.5°C and about

7 Robust is here used to mean that at least two thirds of climate models show the same sign of changes at the grid point scale, and that differences in large regions are statistically significant.

8 Projected changes in impacts between different levels of global warming are determined with respect to changes in global mean surface air temperature.
4°C at 2°C, and extreme cold nights in high latitudes warm by up to about 4.5°C at 1.5°C and about 6°C at 2°C (high confidence). The number of hot days is projected to increase in most land regions, with highest increases in the tropics (high confidence). {3.3.1, 3.3.2, Cross-Chapter Box 8 in Chapter 3}

B1.3. Risks from droughts and precipitation deficits are projected to be higher at 2°C compared to 1.5°C global warming in some regions (medium confidence). Risks from heavy precipitation events are projected to be higher at 2°C compared to 1.5°C global warming in several northern hemisphere high-latitude and/or high-elevation regions, eastern Asia and eastern North America (medium confidence). Heavy precipitation associated with tropical cyclones is projected to be higher at 2°C compared to 1.5°C global warming (medium confidence). There is generally low confidence in projected changes in heavy precipitation at 2°C compared to 1.5°C in other regions. Heavy precipitation when aggregated at global scale is projected to be higher at 2.0°C than at 1.5°C of global warming (medium confidence). As a consequence of heavy precipitation, the fraction of the global land area affected by flood hazards is projected to be larger at 2°C compared to 1.5°C of global warming (medium confidence). {3.3.1, 3.3.3, 3.3.4, 3.3.5, 3.3.6}

B2. By 2100, global mean sea level rise is projected to be around 0.1 metre lower with global warming of 1.5°C compared to 2°C (medium confidence). Sea level will continue to rise well beyond 2100 (high confidence), and the magnitude and rate of this rise depends on future emission pathways. A slower rate of sea level rise enables greater opportunities for adaptation in the human and ecological systems of small islands, low-lying coastal areas and deltas (medium confidence). {3.3, 3.4, 3.6}

B2.1. Model-based projections of global mean sea level rise (relative to 1986-2005) suggest an indicative range of 0.26 to 0.77 m by 2100 for 1.5°C global warming, 0.1 m (0.04-0.16 m) less than for a global warming of 2°C (medium confidence). A reduction of 0.1 m in global sea level rise implies that up to 10 million fewer people would be exposed to related risks, based on population in the year 2010 and assuming no adaptation (medium confidence). {3.4.4, 3.4.5, 4.3.2}

B2.2. Sea level rise will continue beyond 2100 even if global warming is limited to 1.5°C in the 21st century (high confidence). Marine ice sheet instability in Antarctica and/or irreversible loss of the Greenland ice sheet could result in multi-metre rise in sea level over hundreds to thousands of years. These instabilities could be triggered around 1.5°C to 2°C of global warming (medium confidence). {3.3.9, 3.4.5, 3.5.2, 3.6.3, Box 3.3, Figure SPM.2}

B2.3. Increasing warming amplifies the exposure of small islands, low-lying coastal areas and deltas to the risks associated with sea level rise for many human and ecological systems, including increased saltwater intrusion, flooding and damage to infrastructure (high confidence). Risks associated with sea level rise are higher at 2°C compared to 1.5°C. The slower rate of sea level rise at global warming of 1.5°C reduces these risks enabling greater opportunities for adaptation including managing and restoring natural coastal ecosystems, and infrastructure reinforcement (medium confidence). {3.4.5, Figure SPM.2, Box 3.5}

B3. On land, impacts on biodiversity and ecosystems, including species loss and extinction, are projected to be lower at 1.5°C of global warming compared to 2°C. Limiting global warming to 1.5°C compared to 2°C is projected to lower the impacts on terrestrial, freshwater, and coastal ecosystems and to retain more of their services to humans (high confidence). (Figure SPM.2) {3.4, 3.5, Box 3.4, Box 4.2, Cross-Chapter Box 8 in Chapter 3}
B3.1. Of 105,000 species studied, 6% of insects, 8% of plants and 4% of vertebrates are projected to lose over half of their climatically determined geographic range for global warming of 1.5°C, compared with 18% of insects, 16% of plants and 8% of vertebrates for global warming of 2°C (medium confidence). Impacts associated with other biodiversity-related risks such as forest fires, and the spread of invasive species, are lower at 1.5°C compared to 2°C of global warming (high confidence). {3.4.3, 3.5.2}

B3.2. Approximately 4% (interquartile range 2–7%) of the global terrestrial land area is projected to undergo a transformation of ecosystems from one type to another at 1°C of global warming, compared with 13% (interquartile range 8–20%) at 2°C (medium confidence). This indicates that the area at risk is projected to be approximately 50% lower at 1.5°C compared to 2°C (medium confidence). {3.4.3.1, 3.4.3.5}

B3.3. High-latitude tundra and boreal forests are particularly at risk of climate change-induced degradation and loss, with woody shrubs already encroaching into the tundra (high confidence) and will proceed with further warming. Limiting global warming to 1.5°C rather than 2°C is projected to prevent the thawing over centuries of a permafrost area in the range of 1.5 to 2.5 million km² (medium confidence). {3.3.2, 3.4.3, 3.5.5}

B4. Limiting global warming to 1.5°C compared to 2°C is projected to reduce increases in ocean temperature as well as associated increases in ocean acidity and decreases in ocean oxygen levels (high confidence). Consequently, limiting global warming to 1.5°C is projected to reduce risks to marine biodiversity, fisheries, and ecosystems, and their functions and services to humans, as illustrated by recent changes to Arctic sea ice and warm water coral reef ecosystems (high confidence). {3.3, 3.4, 3.5, Boxes 3.4, 3.5}

B4.1. There is high confidence that the probability of a sea-ice-free Arctic Ocean during summer is substantially lower at global warming of 1.5°C when compared to 2°C. With 1.5°C of global warming, one sea ice-free Arctic summer is projected per century. This likelihood is increased to at least one per decade with 2°C global warming. Effects of a temperature overshoot are reversible for Arctic sea ice cover on decadal time scales (high confidence). {3.3.8, 3.4.4.7}

B4.2. Global warming of 1.5°C is projected to shift the ranges of many marine species, to higher latitudes as well as increase the amount of damage to many ecosystems. It is also expected to drive the loss of coastal resources, and reduce the productivity of fisheries and aquaculture (especially at low latitudes). The risks of climate-induced impacts are projected to be higher at 2°C than those at global warming of 1.5°C (high confidence). Coral reefs, for example, are projected to decline by a further 70–90% at 1.5°C (high confidence) with larger losses (>99%) at 2°C (very high confidence). The risk of irreversible loss of many marine and coastal ecosystems increases with global warming, especially at 2°C or more (high confidence). {3.4.4, Box 3.4}

B4.3. The level of ocean acidification due to increasing CO₂ concentrations associated with global warming of 1.5°C is projected to amplify the adverse effects of warming, and even further at 2°C.

9 Consistent with earlier studies, illustrative numbers were adopted from one recent meta-study.
impacting the growth, development, calcification, survival, and thus abundance of a broad range of species, e.g., from algae to fish \(\textit{high confidence}\). \{3.3.10, 3.4.4\}

B4.4. Impacts of climate change in the ocean are increasing risks to fisheries and aquaculture via impacts on the physiology, survivorship, habitat, reproduction, disease incidence, and risk of invasive species \(\textit{medium confidence}\) but are projected to be less at 1.5°C of global warming than at 2°C. One global fishery model, for example, projected a decrease in global annual catch for marine fisheries of about 1.5 million tonnes for 1.5°C of global warming compared to a loss of more than 3 million tonnes for 2°C of global warming \(\textit{medium confidence}\). \{3.4.4, Box 3.4\}

B5. Climate-related risks to health, livelihoods, food security, water supply, human security, and economic growth are projected to increase with global warming of 1.5°C and increase further with 2°C. (Figure SPM.2) \{3.4, 3.5, 5.2, Box 3.2, Box 3.3, Box 3.5, Box 3.6, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5, 5.2\}

B5.1. Populations at disproportionately higher risk of adverse consequences of global warming of 1.5°C and beyond include disadvantaged and vulnerable populations, some indigenous peoples, and local communities dependent on agricultural or coastal livelihoods \(\textit{high confidence}\). Regions at disproportionately higher risk include Arctic ecosystems, dryland regions, small-island developing states, and least developed countries \(\textit{high confidence}\). Poverty and disadvantages are expected to increase in some populations as global warming increases; limiting global warming to 1.5°C, compared with 2°C, could reduce the number of people both exposed to climate-related risks and susceptible to poverty by up to several hundred million by 2050 \(\textit{medium confidence}\). \{3.4.10, 3.4.11, Box 3.5, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5, 4.2.2.2, 5.2.1, 5.2.2, 5.2.3, 5.6.3\}

B5.2. Any increase in global warming is projected to affect human health, with primarily negative consequences \(\textit{high confidence}\). Lower risks are projected at 1.5°C than at 2°C for heat-related morbidity and mortality \(\textit{very high confidence}\) and for ozone-related mortality if emissions needed for ozone formation remain high \(\textit{high confidence}\). Urban heat islands often amplify the impacts of heatwaves in cities \(\textit{high confidence}\). Risks from some vector-borne diseases, such as malaria and dengue fever, are projected to increase with warming from 1.5°C to 2°C, including potential shifts in their geographic range \(\textit{high confidence}\). \{3.4.7, 3.4.8, 3.5.5.8\}

B5.3. Limiting warming to 1.5°C, compared with 2°C, is projected to result in smaller net reductions in yields of maize, rice, wheat, and potentially other cereal crops, particularly in sub-Saharan Africa, Southeast Asia, and Central and South America; and in the CO₂ dependent, nutritional quality of rice and wheat \(\textit{high confidence}\). Reductions in projected food availability are larger at 2°C than at 1.5°C of global warming in the Sahel, southern Africa, the Mediterranean, central Europe, and the Amazon \(\textit{medium confidence}\). Livestock are projected to be adversely affected with rising temperatures, depending on the extent of changes in feed quality, spread of diseases, and water resource availability \(\textit{high confidence}\). \{3.4.6, 3.5.4, 3.5.5, Box 3.1, Cross-Chapter Box 6 in Chapter 3, Cross-Chapter Box 9 in Chapter 4\}

B5.4. Depending on future socioeconomic conditions, limiting global warming to 1.5°C, compared to 2°C, may reduce the proportion of the world population exposed to a climate-change induced increase in water stress by up to 50%, although there is considerable variability between regions \(\textit{medium confidence}\). Many small island developing states would experience lower water stress as a
result of projected changes in aridity when global warming is limited to 1.5°C, as compared to 2°C (medium confidence). {3.3.5, 3.4.2, 3.4.8, 3.5.5, Box 3.2, Box 3.5, Cross-Chapter Box 9 in Chapter 4}

B5.5. Risks to global aggregated economic growth due to climate change impacts are projected to be lower at 1.5°C than at 2°C by the end of this century\(^\text{10}\) (medium confidence). This excludes the costs of mitigation, adaptation investments and the benefits of adaptation. Countries in the tropics and Southern Hemisphere subtropics are projected to experience the largest impacts on economic growth due to climate change should global warming increase from 1.5°C to 2°C (medium confidence). {3.5.2, 3.5.3}

B5.6. Exposure to multiple and compound climate-related risks increases between 1.5°C and 2°C of global warming, with greater proportions of people both so exposed and susceptible to poverty in Africa and Asia (high confidence). For global warming from 1.5°C to 2°C, risks across energy, food, and water sectors could overlap spatially and temporally, creating new and exacerbating current hazards, exposures, and vulnerabilities that could affect increasing numbers of people and regions (medium confidence). {Box 3.5, 3.3.1, 3.4.5.3, 3.4.5.6, 3.4.11, 3.5.4.9}

B5.7. There are multiple lines of evidence that since the AR5 the assessed levels of risk increased for four of the five Reasons for Concern (RFCs) for global warming to 2°C (high confidence). The risk transitions by degrees of global warming are now: from high to very high between 1.5°C and 2°C for RFC1 (Unique and threatened systems) (high confidence); from moderate to high risk between 1.0°C and 1.5°C for RFC2 (Extreme weather events) (medium confidence); from moderate to high risk between 1.5°C and 2°C for RFC3 (Distribution of impacts) (high confidence); from moderate to high risk between 1.5°C and 2.5°C for RFC4 (Global aggregate impacts) (medium confidence); and from moderate to high risk between 1°C and 2.5°C for RFC5 (Large-scale singular events) (medium confidence). (Figure SPM.2) {3.4.13; 3.5, 3.5.2}

\(^{10}\) Here, impacts on economic growth refer to changes in GDP. Many impacts, such as loss of human lives, cultural heritage, and ecosystem services, are difficult to value and monetize.
How the level of global warming affects impacts and/or risks associated with the Reasons for Concern (RFCs) and selected natural, managed and human systems

Five Reasons For Concern (RFCs) illustrate the impacts and risks of different levels of global warming for people, economies and ecosystems across sectors and regions.

Impacts and risks associated with the Reasons for Concern (RFCs)

- RFC1: Unique and threatened systems
- RFC2: Extreme weather events
- RFC3: Distribution of impacts
- RFC4: Global aggregate impacts
- RFC5: Large scale singular events

Confidence level for transition: L=Low, M=Medium, H=High and VH=Very high

Impacts and risks for selected natural, managed and human systems

- Warm water corals
- Mangroves
- Small scale low latitude fisheries
- Arctic Region
- Terrestrial Ecosystems
- Coastal flooding
- Fluvial Flooding
- Crop Yields
- Tourism
- Heat-related morbidity and mortality

Purple indicates very high risks of severe impacts/risks and the presence of significant irreversibility or the persistence of climate-related hazards, combined with limited ability to adapt due to the nature of the hazard or impacts/risks.

Red indicates severe and widespread impacts/risks.

Yellow indicates that impacts/risks are detectable and attributable to climate change with at least medium confidence.

White indicates that no impacts are detectable and attributable to climate change.
Figure SPM.2: Five integrative reasons for concern (RFCs) provide a framework for summarizing key impacts and risks across sectors and regions, and were introduced in the IPCC Third Assessment Report. RFCs illustrate the implications of global warming for people, economies, and ecosystems. Impacts and/or risks for each RFC are based on assessment of the new literature that has appeared. As in the AR5, this literature was used to make expert judgments to assess the levels of global warming at which levels of impact and/or risk are undetectable, moderate, high or very high. The selection of impacts and risks to natural, managed and human systems in the lower panel is illustrative and is not intended to be fully comprehensive. RFC1 Unique and threatened systems: ecological and human systems that have restricted geographic ranges constrained by climate related conditions and have high endemism or other distinctive properties. Examples include coral reefs, the Arctic and its indigenous people, mountain glaciers, and biodiversity hotspots. RFC2 Extreme weather events: risks/impacts to human health, livelihoods, assets, and ecosystems from extreme weather events such as heat waves, heavy rain, drought and associated wildfires, and coastal flooding. RFC3 Distribution of impacts: risks/impacts that disproportionately affect particular groups due to uneven distribution of physical climate change hazards, exposure or vulnerability. RFC4 Global aggregate impacts: global monetary damage, global scale degradation and loss of ecosystems and biodiversity. RFC5 Large-scale singular events: are relatively large, abrupt and sometimes irreversible changes in systems that are caused by global warming. Examples include disintegration of the Greenland and Antarctic ice sheets. {3.4, 3.5, 3.5.2.1, 3.5.2.2, 3.5.2.3, 3.5.2.4, 3.5.2.5, 5.4.1 5.5.3, 5.6.1, Box 3.4}
B6. Most adaptation needs will be lower for global warming of 1.5°C compared to 2°C (high confidence). There are a wide range of adaptation options that can reduce the risks of climate change (high confidence). There are limits to adaptation and adaptive capacity for some human and natural systems at global warming of 1.5°C, with associated losses (medium confidence). The number and availability of adaptation options vary by sector (medium confidence). {Table 3.5, 4.3, 4.5, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 12 in Chapter 5}

B6.1. A wide range of adaptation options are available to reduce the risks to natural and managed ecosystems (e.g., ecosystem-based adaptation, ecosystem restoration and avoided degradation and deforestation, biodiversity management, sustainable aquaculture, and local knowledge and indigenous knowledge), the risks of sea level rise (e.g., coastal defence and hardening), and the risks to health, livelihoods, food, water, and economic growth, especially in rural landscapes (e.g., efficient irrigation, social safety nets, disaster risk management, risk spreading and sharing, community-based adaptation) and urban areas (e.g., green infrastructure, sustainable land use and planning, and sustainable water management) (medium confidence). {4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.5.3, 4.5.4, 5.3.2, Box 4.2, Box 4.3, Box 4.6, Cross-Chapter Box 9 in Chapter 4}.

B6.2. Adaptation is expected to be more challenging for ecosystems, food and health systems at 2°C of global warming than for 1.5°C (medium confidence). Some vulnerable regions, including small islands and Least Developed Countries, are projected to experience high multiple interrelated climate risks even at global warming of 1.5°C (high confidence). {3.3.1, 3.4.5, Box 3.5, Table 3.5, Cross-Chapter Box 9 in Chapter 4, 5.6, Cross-Chapter Box 12 in Chapter 5, Box 5.3}

B6.3. Limits to adaptive capacity exist at 1.5°C of global warming, become more pronounced at higher levels of warming and vary by sector, with site-specific implications for vulnerable regions, ecosystems, and human health (medium confidence) {Cross-Chapter Box 12 in Chapter 5, Box 3.5, Table 3.5}

C. Emission Pathways and System Transitions Consistent with 1.5°C Global Warming

C1. In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO₂ emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero around 2050 (2045–2055 interquartile range). For limiting global warming to below 2°C¹¹ CO₂ emissions are projected to decline by about 20% by 2030 in most pathways (10–30% interquartile range) and reach net zero around 2075 (2065–2080 interquartile range). Non-CO₂ emissions in pathways that limit global warming to 1.5°C show deep reductions that are similar to those in pathways limiting warming to 2°C (high confidence) (Figure SPM.3a) {2.1, 2.3, Table 2.4}.

C1.1. CO₂ emissions reductions that limit global warming to 1.5°C with no or limited overshoot can involve different portfolios of mitigation measures, striking different balances between lowering energy and resource intensity, rate of decarbonization, and the reliance on carbon dioxide removal. Different portfolios face different implementation challenges, and potential synergies and trade-offs with sustainable development. (high confidence). (Figure SPM.3b) {2.3.2, 2.3.4, 2.4, 2.5.3}

¹¹ References to pathways limiting global warming to 2°C are based on a 66% probability of staying below 2°C.
C1.2. Modelled pathways that limit global warming to 1.5°C with no or limited overshoot involve deep reductions in emissions of methane and black carbon (35% or more of both by 2050 relative to 2010). These pathways also reduce most of the cooling aerosols, which partially offsets mitigation effects for two to three decades. Non-\(CO_2\) emissions\(^{12}\) can be reduced as a result of broad mitigation measures in the energy sector. In addition, targeted non-\(CO_2\) mitigation measures can reduce nitrous oxide and methane from agriculture, methane from the waste sector, some sources of black carbon, and hydrofluorocarbons. High bioenergy demand can increase emissions of nitrous oxide in some 1.5°C pathways, highlighting the importance of appropriate management approaches. Improved air quality resulting from projected reductions in many non-\(CO_2\) emissions provide direct and immediate population health benefits in all 1.5°C model pathways. (high confidence) (Figure SPM.3a) {2.2.1, 2.3.3, 2.4.4, 2.5.3, 4.3.6, 5.4.2}

C1.3. Limiting global warming requires limiting the total cumulative global anthropogenic emissions of \(CO_2\) since the preindustrial period, i.e. staying within a total carbon budget (high confidence).\(^{13}\) By the end of 2017, anthropogenic \(CO_2\) emissions since the preindustrial period are estimated to have reduced the total carbon budget for 1.5°C by approximately 2200 ± 320 Gt\(CO_2\) (medium confidence). The associated remaining budget is being depleted by current emissions of 42 ± 3 Gt\(CO_2\) per year (high confidence). The choice of the measure of global temperature affects the estimated remaining carbon budget. Using global mean surface air temperature, as in AR5, gives an estimate of the remaining carbon budget of 580 Gt\(CO_2\) for a 50% probability of limiting warming to 1.5°C, and 420 Gt\(CO_2\) for a 66% probability (medium confidence).\(^{14}\) Alternatively, using GMST gives estimates of 770 and 570 Gt\(CO_2\) for 50% and 66% probabilities, respectively (medium confidence). Uncertainties in the size of these estimated remaining carbon budgets are substantial and depend on several factors. Uncertainties in the climate response to \(CO_2\) and non-\(CO_2\) emissions contribute ±400 Gt\(CO_2\) and the level of historic warming contributes ±250 Gt\(CO_2\) (medium confidence). Potential additional carbon release from future permafrost thawing and methane release from wetlands would reduce budgets by up to 100 Gt\(CO_2\) over the course of this century and more thereafter (medium confidence). In addition, the level of non-\(CO_2\) mitigation in the future could alter the remaining carbon budget by 250 Gt\(CO_2\) in either direction (medium confidence). {1.2.4, 2.2.2, 2.6.1, Table 2.2, Chapter 2 Supplementary Material}

C1.4. Solar radiation modification (SRM) measures are not included in any of the available assessed pathways. Although some SRM measures may be theoretically effective in reducing an overshoot, they face large uncertainties and knowledge gaps as well as substantial risks,

\(^{12}\) Non-\(CO_2\) emissions included in this report are all anthropogenic emissions other than \(CO_2\) that result in radiative forcing. These include short-lived climate forcers, such as methane, some fluorinated gases, ozone precursors, aerosols or aerosol precursors, such as black carbon and sulphur dioxide, respectively, as well as long-lived greenhouse gases, such as nitrous oxide or some fluorinated gases. The radiative forcing associated with non-\(CO_2\) emissions and changes in surface albedo is referred to as non-\(CO_2\) radiative forcing. \{x,y\}

\(^{13}\) There is a clear scientific basis for a total carbon budget consistent with limiting global warming to 1.5°C. However, neither this total carbon budget nor the fraction of this budget taken up by past emissions were assessed in this report.

\(^{14}\) Irrespective of the measure of global temperature used, updated understanding and further advances in methods have led to an increase in the estimated remaining carbon budget of about 300 Gt\(CO_2\) compared to AR5. (medium confidence) \{x,y\}

\(^{15}\) These estimates use observed GMST to 2006–2015 and estimate future temperature changes using near surface air temperatures.
institutional and social constraints to deployment related to governance, ethics, and impacts on sustainable development. They also do not mitigate ocean acidification. *(medium confidence).* {4.3.8, Cross-Chapter Box 10 in Chapter 4}
Global emissions pathway characteristics

General characteristics of the evolution of anthropogenic net emissions of CO₂, and total emissions of methane, black carbon, and nitrous oxide in model pathways that limit global warming to 1.5°C with no or limited overshoot. Net emissions are defined as anthropogenic emissions reduced by anthropogenic removals. Reductions in net emissions can be achieved through different portfolios of mitigation measures illustrated in Figure SPM3B.

Figure SPM.3a: Global emissions pathway characteristics. The main panel shows global net anthropogenic CO₂ emissions in pathways limiting global warming to 1.5°C with no or limited (less than 0.1°C) overshoot and pathways with higher overshoot. The shaded area shows the full range for pathways analysed in this report. The panels on the right show non-CO₂ emissions ranges for three compounds with large historical forcing and a substantial portion of emissions coming from sources distinct from those central to CO₂ mitigation. Shaded areas in these panels show the 5–95% (light shading) and interquartile (dark shading) ranges of pathways limiting global warming to 1.5°C with no or limited overshoot. Box and whiskers at the bottom of the figure show the timing of pathways reaching global net zero CO₂ emission levels, and a comparison with pathways limiting global warming to 2°C with at least 66% probability. Four illustrative model pathways are highlighted in the main panel and are labelled P1, P2, P3 and P4, corresponding to the LED, S1, S2, and S5 pathways assessed in Chapter 2. Descriptions and characteristics of these pathways are available in Figure SPM3b. {2.1, 2.2, 2.3, Figure 2.5, Figure 2.10, Figure 2.11}
Characteristics of four illustrative model pathways

Different mitigation strategies can achieve the net emissions reductions that would be required to follow a pathway that limit global warming to 1.5°C with no or limited overshoot. All pathways use Carbon Dioxide Removal (CDR), but the amount varies across pathways, as do the relative contributions of Bioenergy with Carbon Capture and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use (AFOLU) sector. This has implications for the emissions and several other pathway characteristics.

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways

<table>
<thead>
<tr>
<th>Global indicators</th>
<th>P1: No or low overshoot</th>
<th>P2: No or low overshoot</th>
<th>P3: No or low overshoot</th>
<th>P4: High overshoot</th>
<th>Interquartile range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ emission change in 2030 (% rel to 2010)</td>
<td>-58</td>
<td>-47</td>
<td>-41</td>
<td>4</td>
<td>(-59, -40)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-93</td>
<td>-95</td>
<td>-91</td>
<td>-97</td>
<td>(-104, -91)</td>
</tr>
<tr>
<td>Kyoto-GHG emissions* in 2030 (% rel to 2010)</td>
<td>-50</td>
<td>-49</td>
<td>-35</td>
<td>-2</td>
<td>(-55, -38)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-82</td>
<td>-89</td>
<td>-78</td>
<td>-80</td>
<td>(-93, -81)</td>
</tr>
<tr>
<td>Final energy demand** in 2030 (% rel to 2010)</td>
<td>-15</td>
<td>-5</td>
<td>-17</td>
<td>17</td>
<td>(-12, 7)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-32</td>
<td>2</td>
<td>21</td>
<td>44</td>
<td>(-11, 22)</td>
</tr>
<tr>
<td>Renewable share in electricity in 2030 (%)</td>
<td>60</td>
<td>58</td>
<td>48</td>
<td>25</td>
<td>(47, 65)</td>
</tr>
<tr>
<td>≤ in 2050 (%)</td>
<td>77</td>
<td>81</td>
<td>63</td>
<td>70</td>
<td>(69, 87)</td>
</tr>
<tr>
<td>Primary energy from coal in 2030 (% rel to 2010)</td>
<td>-78</td>
<td>-61</td>
<td>-75</td>
<td>-59</td>
<td>(-78, -59)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-97</td>
<td>-77</td>
<td>-73</td>
<td>-97</td>
<td>(-95, -74)</td>
</tr>
<tr>
<td>from oil in 2030 (% rel to 2010)</td>
<td>-37</td>
<td>-13</td>
<td>-3</td>
<td>86</td>
<td>(-34,3)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-87</td>
<td>-50</td>
<td>-81</td>
<td>-32</td>
<td>(-78, -31)</td>
</tr>
<tr>
<td>from gas in 2030 (% rel to 2010)</td>
<td>-25</td>
<td>-20</td>
<td>33</td>
<td>37</td>
<td>(-26,21)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-74</td>
<td>-53</td>
<td>21</td>
<td>-48</td>
<td>(-56,6)</td>
</tr>
<tr>
<td>from nuclear in 2030 (% rel to 2010)</td>
<td>59</td>
<td>83</td>
<td>98</td>
<td>106</td>
<td>(44,102)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>150</td>
<td>98</td>
<td>501</td>
<td>468</td>
<td>(91,190)</td>
</tr>
<tr>
<td>from biomass in 2030 (% rel to 2010)</td>
<td>-11</td>
<td>0</td>
<td>36</td>
<td>-1</td>
<td>(29,80)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>-16</td>
<td>49</td>
<td>121</td>
<td>418</td>
<td>(123,261)</td>
</tr>
<tr>
<td>from non-biomass renewables in 2030 (% rel to 2010)</td>
<td>430</td>
<td>470</td>
<td>315</td>
<td>110</td>
<td>(243,438)</td>
</tr>
<tr>
<td>≤ in 2050 (% rel to 2010)</td>
<td>832</td>
<td>1327</td>
<td>878</td>
<td>1137</td>
<td>(575,1300)</td>
</tr>
<tr>
<td>Cumulative CCS until 2100 (GtCO₂)</td>
<td>0</td>
<td>348</td>
<td>687</td>
<td>1218</td>
<td>(550,1017)</td>
</tr>
<tr>
<td>≤ of which BECCS (GtCO₂)</td>
<td>0</td>
<td>151</td>
<td>414</td>
<td>1191</td>
<td>(364,662)</td>
</tr>
<tr>
<td>Land area of bioenergy crops in 2050 (million hectare)</td>
<td>22</td>
<td>93</td>
<td>283</td>
<td>724</td>
<td>(151,320)</td>
</tr>
<tr>
<td>Agricultural CH₄ emissions in 2030 (% rel to 2010)</td>
<td>-24</td>
<td>-48</td>
<td>1</td>
<td>14</td>
<td>(-30,-11)</td>
</tr>
<tr>
<td>in 2050 (% rel to 2010)</td>
<td>-33</td>
<td>-69</td>
<td>-23</td>
<td>2</td>
<td>(-46,-23)</td>
</tr>
<tr>
<td>Agricultural N₂O emissions in 2030 (% rel to 2010)</td>
<td>5</td>
<td>-26</td>
<td>15</td>
<td>3</td>
<td>(-21,4)</td>
</tr>
<tr>
<td>in 2050 (% rel to 2010)</td>
<td>6</td>
<td>-26</td>
<td>0</td>
<td>39</td>
<td>(-26,1)</td>
</tr>
</tbody>
</table>

NOTE: Indicators have been selected to show global trends identified by the Chapter 2 assessment. National and sectoral characteristics can differ substantially from the global trends shown above.

* Kyoto-gas emissions are based on SAR GWP-100
** Changes in energy demand are associated with improvements in energy efficiency and behaviour change
Figure SPM.3b: Characteristics of four illustrative model pathways in relation to global warming of 1.5°C introduced in Figure SPM3a. These pathways were selected to show a range of potential mitigation approaches and vary widely in their projected energy and land use, as well as their assumptions about future socioeconomic developments, including economic and population growth, equity and sustainability. A breakdown of the global net anthropogenic CO₂ emissions into the contributions in terms of CO₂ emissions from fossil fuel and industry, agriculture, forestry and other land use (AFOLU), and bioenergy with carbon capture and storage (BECCS) is shown. AFOLU estimates reported here are not necessarily comparable with countries’ estimates. Further characteristics for each of these pathways are listed below each pathway. These pathways illustrate relative global differences in mitigation strategies, but do not represent central estimates, national strategies, and do not indicate requirements. For comparison, the right-most column shows the interquartile ranges across pathways with no or limited overshoot of 1.5°C. Pathways P1, P2, P3 and P4, correspond to the LED, S1, S2, and S5 pathways assessed in Chapter 2. (Figure SPM.3a) {2.2.1, 2.3.1, 2.3.2, 2.3.3, 2.4.1, 2.4.2, 2.4.4, 2.5.3, Figure 2.5, Figure 2.6, Figure 2.9, Figure 2.10, Figure 2.11, Figure 2.14, Figure 2.15, Figure 2.16, Figure 2.17, Figure 2.24, Figure 2.25, Table 2.4, Table 2.6, Table 2.7, Table 2.9, Table 4.1}
C2. Pathways limiting global warming to 1.5°C with no or limited overshoot would require rapid and far-reaching transitions in energy, land, urban and infrastructure (including transport and buildings), and industrial systems (high confidence). These systems transitions are unprecedented in terms of scale, but not necessarily in terms of speed, and imply deep emissions reductions in all sectors, a wide portfolio of mitigation options and a significant upscaling of investments in those options (medium confidence). {2.3, 2.4, 2.5, 4.2, 4.3, 4.4, 4.5}

C2.1. Pathways that limit global warming to 1.5°C with no or limited overshoot show system changes that are more rapid and pronounced over the next two decades than in 2°C pathways (high confidence). The rates of system changes associated with limiting global warming to 1.5°C with no or limited overshoot have occurred in the past within specific sectors, technologies and spatial contexts, but there is no documented historic precedent for their scale (medium confidence). {2.3.3, 2.3.4, 2.4, 2.5, 4.2.1, 4.2.2, Cross-Chapter Box 11 in Chapter 4}

C2.2. In energy systems, modelled global pathways (considered in the literature) limiting global warming to 1.5°C with no or limited overshoot (for more details see Figure SPM.3b), generally meet energy service demand with lower energy use, including through enhanced energy efficiency, and show faster electrification of energy end use compared to 2°C (high confidence). In 1.5°C pathways with no or limited overshoot, low-emission energy sources are projected to have a higher share, compared with 2°C pathways, particularly before 2050 (high confidence). In 1.5°C pathways with no or limited overshoot, renewables are projected to supply 70–85% (interquartile range) of electricity in 2050 (high confidence). In electricity generation, shares of nuclear and fossil fuels with carbon dioxide capture and storage (CCS) are modelled to increase in most 1.5°C pathways with no or limited overshoot. In modelled 1.5°C pathways with limited or no overshoot, the use of CCS would allow the electricity generation share of gas to be approximately 8% (3–11% interquartile range) of global electricity in 2050, while the use of coal shows a steep reduction in all pathways and would be reduced to close to 0% (0–2%) of electricity (high confidence). While acknowledging the challenges, and differences between the options and national circumstances, political, economic, social and technical feasibility of solar energy, wind energy and electricity storage technologies have substantially improved over the past few years (high confidence). These improvements signal a potential system transition in electricity generation (Figure SPM.3b) {2.4.1, 2.4.2, Figure 2.1, Table 2.6, Table 2.7, Cross-Chapter Box 6 in Chapter 3, 4.2.1, 4.3.1, 4.3.3, 4.5.2}

C2.3. CO₂ emissions from industry in pathways limiting global warming to 1.5°C with no or limited overshoot are projected to be about 75–90% (interquartile range) lower in 2050 relative to 2010, as compared to 50–80% for global warming of 2°C (medium confidence). Such reductions can be achieved through combinations of new and existing technologies and practices, including electrification, hydrogen, sustainable bio-based feedstocks, product substitution, and carbon capture, utilization and storage (CCUS). These options are technically proven at various scales but their large-scale deployment may be limited by economic, financial, human capacity and institutional constraints in specific contexts, and specific characteristics of large-scale industrial installations. In industry, emissions reductions by energy and process efficiency by themselves are insufficient for limiting warming to 1.5°C with no or limited overshoot (high confidence). {2.4.3, 4.2.1, Table 4.1, Table 4.3, 4.3.3, 4.3.4, 4.5.2}

C2.4. The urban and infrastructure system transition consistent with limiting global warming to 1.5°C with no or limited overshoot would imply, for example, changes in land and urban planning practices, as well as deeper emissions reductions in transport and buildings compared to pathways that limit global warming below 2°C (see 2.4.3; 4.3.3; 4.2.1) (medium confidence).
measures and practices enabling deep emissions reductions include various energy efficiency options. In pathways limiting global warming to 1.5°C with no or limited overshoot, the electricity share of energy demand in buildings would be about 55–75% in 2050 compared to 50–70% in 2050 for 2°C global warming (medium confidence). In the transport sector, the share of low-emission final energy would rise from less than 5% in 2020 to about 35–65% in 2050 compared to 25–45% for 2°C global warming (medium confidence). Economic, institutional and socio-cultural barriers may inhibit these urban and infrastructure system transitions, depending on national, regional and local circumstances, capabilities and the availability of capital (high confidence). {2.3.4, 2.4.3, 4.2.1, Table 4.1, 4.3.3, 4.5.2}.

C2.5. Transitions in global and regional land use are found in all pathways limiting global warming to 1.5°C with no or limited overshoot, but their scale depends on the pursued mitigation portfolio. Model pathways that limit global warming to 1.5°C with no or limited overshoot project the conversion of 0.5–8 million km² of pasture and 0–5 million km² of non-pasture agricultural land for food and feed crops into 1–7 million km² for energy crops and a 1 million km² reduction to 10 million km² increase in forests by 2050 relative to 2010 (medium confidence).16 Land use transitions of similar magnitude can be observed in modelled 2°C pathways (medium confidence). Such large transitions pose profound challenges for sustainable management of the various demands on land for human settlements, food, livestock feed, fibre, bioenergy, carbon storage, biodiversity and other ecosystem services (high confidence). Mitigation options limiting the demand for land include sustainable intensification of land use practices, ecosystem restoration and changes towards less resource-intensive diets (high confidence). The implementation of land-based mitigation options would require overcoming socio-economic, institutional, technological, financing and environmental barriers that differ across regions (high confidence). {2.4.4, Figure 2.24, 4.3.2, 4.5.2, Cross-Chapter Box 7 in Chapter 3}

C2.6 Total annual average energy-related mitigation investment for the period 2015 to 2050 in pathways limiting warming to 1.5°C is estimated to be around 900 billion USD2015 (range of 180 billion to 1800 billion USD2015 across six models17). This corresponds to total annual average energy supply investments of 1600 to 3800 billion USD2015 and total annual average energy demand investments of 700 to 1000 billion USD2015 for the period 2015 to 2050, and an increase in total energy-related investments of about 12% (range of 3% to 23%) in 1.5°C pathways relative to 2°C pathways. Average annual investment in low-carbon energy technologies and energy efficiency are upscaled by roughly a factor of five (range of factor of 4 to 5) by 2050 compared to 2015 (medium confidence). {2.5.2, Box 4.8, Figure 2.27}

C2.7. Modelled pathways limiting global warming to 1.5°C with no or limited overshoot project a wide range of global average discounted marginal abatement costs over the 21st century. They are roughly 3–4 times higher than in pathways limiting global warming to below 2°C (high confidence). The economic literature distinguishes marginal abatement costs from total mitigation costs in the economy. The literature on total mitigation costs of 1.5°C mitigation pathways is limited and was not assessed in this report. Knowledge gaps remain in the integrated assessment of the economy wide costs and benefits of mitigation in line with pathways limiting warming to 1.5°C. {2.5.2; 2.6; Figure 2.26}

16 The projected land use changes presented are not deployed to their upper limits simultaneously in a single pathway.
17 Including two pathways limiting warming to 1.5°C with no or limited overshoot and four pathways with high overshoot.
C3. All pathways that limit global warming to 1.5°C with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO\(_2\) over the 21st century. CDR would be used to compensate for residual emissions and, in most cases, achieve net negative emissions to return global warming to 1.5°C following a peak \((\text{high confidence})\). CDR deployment of several hundreds of GtCO\(_2\) is subject to multiple feasibility and sustainability constraints \((\text{high confidence})\). Significant near-term emissions reductions and measures to lower energy and land demand can limit CDR deployment to a few hundred GtCO\(_2\) without reliance on bioenergy with carbon capture and storage (BECCS) \((\text{high confidence})\). \({2.3, 2.4, 3.6.2, 4.3, 5.4}\)

C3.1. Existing and potential CDR measures include afforestation and reforestation, land restoration and soil carbon sequestration, BECCS, direct air carbon capture and storage (DACCS), enhanced weathering and ocean alkalinization. These differ widely in terms of maturity, potentials, costs, risks, co-benefits and trade-offs \((\text{high confidence})\). To date, only a few published pathways include CDR measures other than afforestation and BECCS. \({2.3.4, 3.6.2, 4.3.2, 4.3.7}\)

C3.2. In pathways limiting global warming to 1.5°C with limited or no overshoot, BECCS deployment is projected to range from 0–1, 0–8, and 0–16 GtCO\(_2\) yr\(^{-1}\) in 2030, 2050, and 2100, respectively, while agriculture, forestry and land-use (AFOLU) related CDR measures are projected to remove 0–5, 1–11, and 1–5 GtCO\(_2\) yr\(^{-1}\) in these years \((\text{medium confidence})\). The upper end of these deployment ranges by mid-century exceeds the BECCS potential of up to 5 GtCO\(_2\) yr\(^{-1}\) and afforestation potential of up to 3.6 GtCO\(_2\) yr\(^{-1}\) assessed based on recent literature \((\text{medium confidence})\). Some pathways avoid BECCS deployment completely through demand-side measures and greater reliance on AFOLU-related CDR measures \((\text{medium confidence})\). The use of bioenergy can be as high or even higher when BECCS is excluded compared to when it is included due to its potential for replacing fossil fuels across sectors \((\text{high confidence})\). \((\text{Figure SPM.3b})\) \({2.3.3, 2.3.4, 2.4.2, 3.6.2, 4.3.1, 4.2.3, 4.3.2, 4.3.7, 4.4.3, \text{Table 2.4}}\)

C3.3. Pathways that overshoot 1.5°C of global warming rely on CDR exceeding residual CO\(_2\) emissions later in the century to return to below 1.5°C by 2100, with larger overshoots requiring greater amounts of CDR (Figure SPM.3b). \((\text{high confidence})\). Limitations on the speed, scale, and societal acceptability of CDR deployment hence determine the ability to return global warming to below 1.5°C following an overshoot. Carbon cycle and climate system understanding is still limited about the effectiveness of net negative emissions to reduce temperatures after they peak \((\text{high confidence})\). \({2.2, 2.3.4, 2.3.5, 2.6, 4.3.7, 4.5.2, \text{Table 4.11}}\)

C3.4. Most current and potential CDR measures could have significant impacts on land, energy, water, or nutrients if deployed at large scale \((\text{high confidence})\). Afforestation and bioenergy may compete with other land uses and may have significant impacts on agricultural and food systems, biodiversity and other ecosystem functions and services \((\text{high confidence})\). Effective governance is needed to limit such trade-offs and ensure permanence of carbon removal in terrestrial, geological and ocean reservoirs \((\text{high confidence})\). Feasibility and sustainability of CDR use could be enhanced by a portfolio of options deployed at substantial, but lesser scales, rather than a single option at very large scale \((\text{high confidence})\). \((\text{Figure SPM.3b})\) \({2.3.4, 2.4.4, 2.5.3, 2.6, 3.6.2, 4.3.2, 4.3.7, 4.5.2, 5.4.1, 5.4.2; \text{Cross-Chapter Boxes 7 and 8 in Chapter 3, Table 4.11, Table 5.3, Figure 5.3}}\)

C3.5. Some AFOLU-related CDR measures such as restoration of natural ecosystems and soil carbon sequestration could provide co-benefits such as improved biodiversity, soil quality, and local
food security. If deployed at large scale, they would require governance systems enabling sustainable land management to conserve and protect land carbon stocks and other ecosystem functions and services (medium confidence). (Figure SPM.4) {2.3.3, 2.3.4, 2.4.2, 2.4.4, 3.6.2, 5.4.1, Cross-Chapter Boxes 3 in Chapter 1 and 7 in Chapter 3, 4.3.2, 4.3.7, 4.4.1, 4.5.2, Table 2.4}

D. Strengthening the Global Response in the Context of Sustainable Development and Efforts to Eradicate Poverty

D1. Estimates of the global emissions outcome of current nationally stated mitigation ambitions as submitted under the Paris Agreement would lead to global greenhouse gas emissions\(^{18}\) in 2030 of 52–58 GtCO\(_2\)eq yr\(^{-1}\) (medium confidence). Pathways reflecting these ambitions would not limit global warming to 1.5°C, even if supplemented by very challenging increases in the scale and ambition of emissions reductions after 2030 (high confidence). Avoiding overshoot and reliance on future large-scale deployment of carbon dioxide removal (CDR) can only be achieved if global CO\(_2\) emissions start to decline well before 2030 (high confidence). {1.2, 2.3, 3.3, 3.4, 4.2, 4.4, Cross-Chapter Box 11 in Chapter 4}

D1.1. Pathways that limit global warming to 1.5°C with no or limited overshoot show clear emission reductions by 2030 (high confidence). All but one show a decline in global greenhouse gas emissions to below 35 GtCO\(_2\)eq yr\(^{-1}\) in 2030, and half of available pathways fall within the 25–30 GtCO\(_2\)eq yr\(^{-1}\) range (interquartile range), a 40–50% reduction from 2010 levels (high confidence). Pathways reflecting current nationally stated mitigation ambition until 2030 are broadly consistent with cost-effective pathways that result in a global warming of about 3°C by 2100, with warming continuing afterwards (medium confidence). {2.3.3, 2.3.5, Cross-Chapter Box 11 in Chapter 4, 5.5.3.2}

D1.2. Overshoot trajectories result in higher impacts and associated challenges compared to pathways that limit global warming to 1.5°C with no or limited overshoot (high confidence). Reversing warming after an overshoot of 0.2°C or larger during this century would require upscaling and deployment of CDR at rates and volumes that might not be achievable given considerable implementation challenges (medium confidence). {1.3.3, 2.3.4, 2.3.5, 2.5.1, 3.3, 4.3.7, Cross-Chapter Box 8 in Chapter 3, Cross-Chapter Box 11 in Chapter 4}

D1.3. The lower the emissions in 2030, the lower the challenge in limiting global warming to 1.5°C after 2030 with no or limited overshoot (high confidence). The challenges from delayed actions to reduce greenhouse gas emissions include the risk of cost escalation, lock-in in carbon-emitting infrastructure, stranded assets, and reduced flexibility in future response options in the medium to long-term (high confidence). These may increase uneven distributional impacts between countries at different stages of development (medium confidence). {2.3.5, 4.4.5, 5.4.2}

D2. The avoided climate change impacts on sustainable development, eradication of poverty and reducing inequalities would be greater if global warming were limited to 1.5°C rather than 2°C, if mitigation and adaptation synergies are maximized while trade-offs are minimized (high confidence). {1.1, 1.4, 2.5, 3.3, 3.4, 5.2, Table 5.1}

\(^{18}\) GHG emissions have been aggregated with 100-year GWP values as introduced in the IPCC Second Assessment Report
D2.1. Climate change impacts and responses are closely linked to sustainable development which balances social well-being, economic prosperity and environmental protection. The United Nations Sustainable Development Goals (SDGs), adopted in 2015, provide an established framework for assessing the links between global warming of 1.5°C or 2°C and development goals that include poverty eradication, reducing inequalities, and climate action (high confidence) {Cross-Chapter Box 4 in Chapter 1, 1.4, 5.1}

D2.2. The consideration of ethics and equity can help address the uneven distribution of adverse impacts associated with 1.5°C and higher levels of global warming, as well as those from mitigation and adaptation, particularly for poor and disadvantaged populations, in all societies (high confidence). {1.1.1, 1.1.2, 1.4.3, 2.5.3, 3.4.10, 5.1, 5.2, 5.3, 5.4, Cross-Chapter Box 4 in Chapter 1, Cross-Chapter Boxes 6 and 8 in Chapter 3, and Cross-Chapter Box 12 in Chapter 5}

D2.3. Mitigation and adaptation consistent with limiting global warming to 1.5°C are underpinned by enabling conditions, assessed in SR1.5 across the geophysical, environmental-ecological, technological, economic, socio-cultural and institutional dimensions of feasibility. Strengthened multi-level governance, institutional capacity, policy instruments, technological innovation and transfer and mobilization of finance, and changes in human behaviour and lifestyles are enabling conditions that enhance the feasibility of mitigation and adaptation options for 1.5°C consistent systems transitions. (high confidence) {1.4, Cross-Chapter Box 3 in Chapter 1, 4.4, 4.5, 5.6}

D3. Adaptation options specific to national contexts, if carefully selected together with enabling conditions, will have benefits for sustainable development and poverty reduction with global warming of 1.5°C, although trade-offs are possible (high confidence). {1.4, 4.3, 4.5}

D3.1. Adaptation options that reduce the vulnerability of human and natural systems have many synergies with sustainable development, if well managed, such as ensuring food and water security, reducing disaster risks, improving health conditions, maintaining ecosystem services and reducing poverty and inequality (high confidence). Increasing investment in physical and social infrastructure is a key enabling condition to enhance the resilience and the adaptive capacities of societies. These benefits can occur in most regions with adaptation to 1.5°C of global warming (high confidence). {1.4.3, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.4.1, 4.4.3, 4.5.3, 5.3.1, 5.3.2}

D3.2. Adaptation to 1.5°C global warming can also result in trade-offs or maladaptations with adverse impacts for sustainable development. For example, if poorly designed or implemented, adaptation projects in a range of sectors can increase greenhouse gas emissions and water use, increase gender and social inequality, undermine health conditions, and encroach on natural ecosystems (high confidence). These trade-offs can be reduced by adaptations that include attention to poverty and sustainable development (high confidence). {4.3.2, 4.3.3, 4.5.4, 5.3.2; Cross-Chapter Boxes 6 and 7 in Chapter 3}

D3.3. A mix of adaptation and mitigation options to limit global warming to 1.5°C, implemented in a participatory and integrated manner, can enable rapid, systemic transitions in urban and rural areas (high confidence). These are most effective when aligned with economic and sustainable development, and when local and regional governments and decision makers are supported by national governments (medium confidence) {4.3.2, 4.3.3, 4.4.1, 4.4.2}

D3.4. Adaptation options that also mitigate emissions can provide synergies and cost savings in most sectors and system transitions, such as when land management reduces emissions and disaster
risk, or when low carbon buildings are also designed for efficient cooling. Trade-offs between mitigation and adaptation, when limiting global warming to 1.5°C, such as when bioenergy crops, reforestation or afforestation encroach on land needed for agricultural adaptation, can undermine food security, livelihoods, ecosystem functions and services and other aspects of sustainable development. (*high confidence*) {3.4.3, 4.3.2, 4.3.4, 4.4.1, 4.5.2, 4.5.3, 4.5.4}

D4. Mitigation options consistent with 1.5°C pathways are associated with multiple synergies and trade-offs across the Sustainable Development Goals (SDGs). While the total number of possible synergies exceeds the number of trade-offs, their net effect will depend on the pace and magnitude of changes, the composition of the mitigation portfolio and the management of the transition. (*high confidence*) (Figure SPM.4) {2.5, 4.5, 5.4}

D4.1. 1.5°C pathways have robust synergies particularly for the SDGs 3 (health), 7 (clean energy), 11 (cities and communities), 12 (responsible consumption and production), and 14 (oceans) (*very high confidence*). Some 1.5°C pathways show potential trade-offs with mitigation for SDGs 1 (poverty), 2 (hunger), 6 (water), and 7 (energy access), if not carefully managed (*high confidence*) (Figure SPM.4). {5.4.2; Figure 5.4, Cross-Chapter Boxes 7 and 8 in Chapter 3}

D4.2. 1.5°C pathways that include low energy demand (e.g., see P1 in Figure SPM.3a and SPM.3b), low material consumption, and low GHG-intensive food consumption have the most pronounced synergies and the lowest number of trade-offs with respect to sustainable development and the SDGs (*high confidence*). Such pathways would reduce dependence on CDR. In modelled pathways sustainable development, eradicating poverty and reducing inequality can support limiting warming to 1.5°C. (*high confidence*) (Figure SPM.3b, Figure SPM.4) {2.4.3, 2.5.1, 2.5.3, Figure 2.4, Figure 2.28, 5.4.1, 5.4.2, Figure 5.4}

D4.3. 1.5°C and 2°C modelled pathways often rely on the deployment of large-scale land-related measures like afforestation and bioenergy supply, which, if poorly managed, can compete with food production and hence raise food security concerns (*high confidence*). The impacts of carbon dioxide removal (CDR) options on SDGs depend on the type of options and the scale of deployment (*high confidence*). If poorly implemented, CDR options such as BECCS and AFOLU options would lead to trade-offs. Context-relevant design and implementation requires considering people’s needs, biodiversity, and other sustainable development dimensions (*very high confidence*). {Figure SPM.4, 5.4.1.3, Cross-Chapter Box 7 in Chapter 3}

D4.4. Mitigation consistent with 1.5°C pathways creates risks for sustainable development in regions with high dependency on fossil fuels for revenue and employment generation (*high confidence*). Policies that promote diversification of the economy and the energy sector can address the associated challenges (*high confidence*). {5.4.1.2, Box 5.2}

D4.5. Redistributive policies across sectors and populations that shield the poor and vulnerable can resolve trade-offs for a range of SDGs, particularly hunger, poverty and energy access. Investment needs for such complementary policies are only a small fraction of the overall mitigation investments in 1.5°C pathways. (*high confidence*) {2.4.3, 5.4.2, Figure 5.5}
Indicative linkages between mitigation options and sustainable development using SDGs (The linkages do not show costs and benefits)

Mitigation options deployed in each sector can be associated with potential positive effects (synergies) or negative effects (trade-offs) with the Sustainable Development Goals (SDGs). The degree to which this potential is realized will depend on the selected portfolio of mitigation options, mitigation policy design, and local circumstances and context. Particularly in the energy-demand sector, the potential for synergies is larger than for trade-offs. The bars group individually assessed options by level of confidence and take into account the relative strength of the assessed mitigation-SDG connections.

<table>
<thead>
<tr>
<th>Energy-supply</th>
<th>Energy-demand</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDG 1 No Poverty</td>
<td>SDG 1 No Poverty</td>
<td>SDG 1 No Poverty</td>
</tr>
<tr>
<td>SDG 2 Zero Hunger</td>
<td>SDG 2 Zero Hunger</td>
<td>SDG 2 Zero Hunger</td>
</tr>
<tr>
<td>SDG 3 Good Health and Well-being</td>
<td>SDG 3 Good Health and Well-being</td>
<td>SDG 3 Good Health and Well-being</td>
</tr>
<tr>
<td>SDG 4 Quality Education</td>
<td>SDG 4 Quality Education</td>
<td>SDG 4 Quality Education</td>
</tr>
<tr>
<td>SDG 5 Gender Equality</td>
<td>SDG 5 Gender Equality</td>
<td>SDG 5 Gender Equality</td>
</tr>
<tr>
<td>SDG 6 Clean Water and Sanitation</td>
<td>SDG 6 Clean Water and Sanitation</td>
<td>SDG 6 Clean Water and Sanitation</td>
</tr>
<tr>
<td>SDG 7 Affordable and Clean Energy</td>
<td>SDG 7 Affordable and Clean Energy</td>
<td>SDG 7 Affordable and Clean Energy</td>
</tr>
<tr>
<td>SDG 8 Decent Work and Economic Growth</td>
<td>SDG 8 Decent Work and Economic Growth</td>
<td>SDG 8 Decent Work and Economic Growth</td>
</tr>
<tr>
<td>SDG 9 Industry, Innovation and Infrastructure</td>
<td>SDG 9 Industry, Innovation and Infrastructure</td>
<td>SDG 9 Industry, Innovation and Infrastructure</td>
</tr>
<tr>
<td>SDG 10 Reduced Inequality</td>
<td>SDG 10 Reduced Inequality</td>
<td>SDG 10 Reduced Inequality</td>
</tr>
<tr>
<td>SDG 11 Sustainable Cities and Communities</td>
<td>SDG 11 Sustainable Cities and Communities</td>
<td>SDG 11 Sustainable Cities and Communities</td>
</tr>
<tr>
<td>SDG 12 Responsible Consumption and Production</td>
<td>SDG 12 Responsible Consumption and Production</td>
<td>SDG 12 Responsible Consumption and Production</td>
</tr>
<tr>
<td>SDG 13 Climate Action</td>
<td>SDG 13 Climate Action</td>
<td>SDG 13 Climate Action</td>
</tr>
<tr>
<td>SDG 14 Life Below Water</td>
<td>SDG 14 Life Below Water</td>
<td>SDG 14 Life Below Water</td>
</tr>
<tr>
<td>SDG 15 Life on Land</td>
<td>SDG 15 Life on Land</td>
<td>SDG 15 Life on Land</td>
</tr>
<tr>
<td>SDG 16 Peace and Justice Strong Institutions</td>
<td>SDG 16 Peace and Justice Strong Institutions</td>
<td>SDG 16 Peace and Justice Strong Institutions</td>
</tr>
<tr>
<td>SDG 17 Partnerships for the Goals</td>
<td>SDG 17 Partnerships for the Goals</td>
<td>SDG 17 Partnerships for the Goals</td>
</tr>
</tbody>
</table>

Length shows strength of connection

The overall size of the coloured bars depict the relative for synergies and trade-offs between the sectoral mitigation options and the SDGs.

Shades show level of confidence

The shades depict the level of confidence of the assessed potential for Trade-offs/Synergies.
Figure SPM.4: Potential synergies and trade-offs between the sectoral portfolio of climate change mitigation options and the Sustainable Development Goals (SDGs). The SDGs serve as an analytical framework for the assessment of the different sustainable development dimensions, which extend beyond the time frame of the 2030 SDG targets. The assessment is based on literature on mitigation options that are considered relevant for 1.5°C. The assessed strength of the SDG interactions is based on the qualitative and quantitative assessment of individual mitigation options listed in Table 5.2. For each mitigation option, the strength of the SDG-connection as well as the associated confidence of the underlying literature (shades of green and red) was assessed. The strength of positive connections (synergies) and negative connections (trade-offs) across all individual options within a sector (see Table 5.2) are aggregated into sectoral potentials for the whole mitigation portfolio. The (white) areas outside the bars, which indicate no interactions, have low confidence due to the uncertainty and limited number of studies exploring indirect effects. The strength of the connection considers only the effect of mitigation and does not include benefits of avoided impacts. SDG 13 (climate action) is not listed because mitigation is being considered in terms of interactions with SDGs and not vice versa. The bars denote the strength of the connection, and do not consider the strength of the impact on the SDGs. The energy demand sector comprises behavioural responses, fuel switching and efficiency options in the transport, industry and building sector as well as carbon capture options in the industry sector. Options assessed in the energy supply sector comprise biomass and non-biomass renewables, nuclear, CCS with bio-energy, and CCS with fossil fuels. Options in the land sector comprise agricultural and forest options, sustainable diets & reduced food waste, soil sequestration, livestock & manure management, reduced deforestation, afforestation & reforestation, responsible sourcing. In addition to this figure, options in the ocean sector are discussed in the underlying report. \{5.4, Table 5.2, Figure 5.2\}

Statement for knowledge gap:
Information about the net impacts of mitigation on sustainable development in 1.5°C pathways is available only for a limited number of SDGs and mitigation options. Only a limited number of studies have assessed the benefits of avoided climate change impacts of 1.5°C pathways for the SDGs, and the co-effects of adaptation for mitigation and the SDGs. The assessment of the indicative mitigation potentials in Figure SPM.4 is a step further from AR5 towards a more comprehensive and integrated assessment in the future.
D5. Limiting the risks from global warming of 1.5°C in the context of sustainable development and poverty eradication implies system transitions that can be enabled by an increase of adaptation and mitigation investments, policy instruments, the acceleration of technological innovation and behaviour changes (high confidence). {2.3, 2.4, 2.5, 3.2, 4.2, 4.4, 4.5, 5.2, 5.5, 5.6}

D5.1. Directing finance towards investment in infrastructure for mitigation and adaptation could provide additional resources. This could involve the mobilization of private funds by institutional investors, asset managers and development or investment banks, as well as the provision of public funds. Government policies that lower the risk of low-emission and adaptation investments can facilitate the mobilization of private funds and enhance the effectiveness of other public policies. Studies indicate a number of challenges including access to finance and mobilisation of funds (high confidence) {2.5.2, 4.4.5}

D5.2. Adaptation finance consistent with global warming of 1.5°C is difficult to quantify and compare with 2°C. Knowledge gaps include insufficient data to calculate specific climate resilience-enhancing investments, from the provision of currently underinvested basic infrastructure. Estimates of the costs of adaptation might be lower at global warming of 1.5°C than for 2°C. Adaptation needs have typically been supported by public sector sources such as national and subnational government budgets, and in developing countries together with support from development assistance, multilateral development banks, and UNFCCC channels (medium confidence). More recently there is a growing understanding of the scale and increase in NGO and private funding in some regions (medium confidence). Barriers include the scale of adaptation financing, limited capacity and access to adaptation finance (medium confidence). {4.4.5, 4.6}

D5.3. Global model pathways limiting global warming to 1.5°C are projected to involve the annual average investment needs in the energy system of around 2.4 trillion USD2010 between 2016 and 2035 representing about 2.5% of the world GDP (medium confidence). {2.5.2, 4.4.5, Box 4.8}

D5.4. Policy tools can help mobilise incremental resources, including through shifting global investments and savings and through market and non-market based instruments as well as accompanying measures to secure the equity of the transition, acknowledging the challenges related with implementation including those of energy costs, depreciation of assets and impacts on international competition, and utilizing the opportunities to maximize co-benefits (high confidence) {1.3.3, 2.3.4, 2.3.5, 2.5.1, 2.5.2, Cross-Chapter Box 8 in Chapter 3 and 11 in Chapter 4, 4.4.5, 5.5.2}

D5.5. The systems transitions consistent with adapting to and limiting global warming to 1.5°C include the widespread adoption of new and possibly disruptive technologies and practices and enhanced climate-driven innovation. These imply enhanced technological innovation capabilities, including in industry and finance. Both national innovation policies and international cooperation can contribute to the development, commercialization and widespread adoption of mitigation and adaptation technologies. Innovation policies may be more effective when they combine public support for research and development with policy mixes that provide incentives for technology diffusion. (high confidence) {4.4.4, 4.4.5}.

D5.6. Education, information, and community approaches, including those that are informed by Indigenous knowledge and local knowledge, can accelerate the wide scale behaviour changes consistent with adapting to and limiting global warming to 1.5°C. These approaches are more
effective when combined with other policies and tailored to the motivations, capabilities, and resources of specific actors and contexts (high confidence). Public acceptability can enable or inhibit the implementation of policies and measures to limit global warming to 1.5°C and to adapt to the consequences. Public acceptability depends on the individual’s evaluation of expected policy consequences, the perceived fairness of the distribution of these consequences, and perceived fairness of decision procedures (high confidence). {1.1, 1.5, 4.3.5, 4.4.1, 4.4.3, Box 4.3, 5.5.3, 5.6.5}

D6. Sustainable development supports, and often enables, the fundamental societal and systems transitions and transformations that help limit global warming to 1.5°C. Such changes facilitate the pursuit of climate-resilient development pathways that achieve ambitious mitigation and adaptation in conjunction with poverty eradication and efforts to reduce inequalities (high confidence). {Box 1.1, 1.4.3, Figure 5.1, 5.5.3, Box 5.3}

D6.1. Social justice and equity are core aspects of climate-resilient development pathways that aim to limit global warming to 1.5°C as they address challenges and inevitable trade-offs, widen opportunities, and ensure that options, visions, and values are deliberated, between and within countries and communities, without making the poor and disadvantaged worse off (high confidence). {5.5.2, 5.5.3, Box 5.3, Figure 5.1, Figure 5.6, Cross-Chapter Boxes 12 and 13 in Chapter 5}

D6.2. The potential for climate-resilient development pathways differs between and within regions and nations, due to different development contexts and systemic vulnerabilities (very high confidence). Efforts along such pathways to date have been limited (medium confidence) and enhanced efforts would involve strengthened and timely action from all countries and non-state actors (high confidence). {5.5.1, 5.5.3, Figure 5.1}

D6.3. Pathways that are consistent with sustainable development show fewer mitigation and adaptation challenges and are associated with lower mitigation costs. The large majority of modelling studies could not construct pathways characterized by lack of international cooperation, inequality and poverty that were able to limit global warming to 1.5°C. (high confidence) {2.3.1, 2.5.3, 5.5.2}

D7. Strengthening the capacities for climate action of national and sub-national authorities, civil society, the private sector, indigenous peoples and local communities can support the implementation of ambitious actions implied by limiting global warming to 1.5°C (high confidence). International cooperation can provide an enabling environment for this to be achieved in all countries and for all people, in the context of sustainable development. International cooperation is a critical enabler for developing countries and vulnerable regions (high confidence). {1.4, 2.3, 2.5, 4.2, 4.4, 4.5, 5.3, 5.4, 5.5, 5.6, 5, Box 4.1, Box 4.2, Box 4.7, Box 5.3, Cross-Chapter Box 9 in Chapter 4, Cross-Chapter Box 13 in Chapter 5}

D7.1. Partnerships involving non-state public and private actors, institutional investors, the banking system, civil society and scientific institutions would facilitate actions and responses consistent with limiting global warming to 1.5°C (very high confidence). {1.4, 4.4.1, 4.2.2, 4.4.3, 4.4.5, 4.5.3, 5.4.1, 5.6.2, Box 5.3}.

D7.2. Cooperation on strengthened accountable multilevel governance that includes non-state actors such as industry, civil society and scientific institutions, coordinated sectoral and cross-sectoral
policies at various governance levels, gender-sensitive policies, finance including innovative financing and cooperation on technology development and transfer can ensure participation, transparency, capacity building, and learning among different players (*high confidence*). {2.5.2, 4.2.2, 4.4.1, 4.4.2, 4.4.3, 4.4.4, 4.5.3, Cross-Chapter Box 9 in Chapter 4, 5.3.1, 4.4.5, 5.5.3, Cross-Chapter Box 13 in Chapter 5, 5.6.1, 5.6.3}

D7.3. International cooperation is a critical enabler for developing countries and vulnerable regions to strengthen their action for the implementation of 1.5°C-consistent climate responses, including through enhancing access to finance and technology and enhancing domestic capacities, taking into account national and local circumstances and needs (*high confidence*). {2.3.1, 4.4.1, 4.4.2, 4.4.4, 4.4.5, 5.4.1 5.5.3, 5.6.1, Box 4.1, Box 4.2, Box 4.7}.

D7.4. Collective efforts at all levels, in ways that reflect different circumstances and capabilities, in the pursuit of limiting global warming to 1.5°C, taking into account equity as well as effectiveness, can facilitate strengthening the global response to climate change, achieving sustainable development and eradicating poverty (*high confidence*). {1.4.2, 2.3.1, 2.5.2, 4.2.2, 4.4.1, 4.4.2, 4.4.3, 4.4.4, 4.4.5, 4.5.3, 5.3.1, 5.4.1, 5.5.3, 5.6.1, 5.6.2, 5.6.3}
Box SPM 1: Core Concepts Central to this Special Report

Global mean surface temperature (GMST): Estimated global average of near-surface air temperatures over land and sea-ice, and sea surface temperatures over ice-free ocean regions, with changes normally expressed as departures from a value over a specified reference period. When estimating changes in GMST, near-surface air temperature over both land and oceans are also used.19{1.2.1.1}

Pre-industrial: The multi-century period prior to the onset of large-scale industrial activity around 1750. The reference period 1850–1900 is used to approximate pre-industrial GMST. {1.2.1.2}

Global warming: The estimated increase in GMST averaged over a 30-year period, or the 30-year period centered on a particular year or decade, expressed relative to pre-industrial levels unless otherwise specified. For 30-year periods that span past and future years, the current multi-decadal warming trend is assumed to continue. {1.2.1}

Net zero CO\textsubscript{2} emissions: Net-zero carbon dioxide (CO\textsubscript{2}) emissions are achieved when anthropogenic CO\textsubscript{2} emissions are balanced globally by anthropogenic CO\textsubscript{2} removals over a specified period.

Carbon dioxide removal (CDR): Anthropogenic activities removing CO\textsubscript{2} from the atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products. It includes existing and potential anthropogenic enhancement of biological or geochemical sinks and direct air capture and storage, but excludes natural CO\textsubscript{2} uptake not directly caused by human activities.

Total carbon budget: Estimated cumulative net global anthropogenic CO\textsubscript{2} emissions from the preindustrial period to the time that anthropogenic CO\textsubscript{2} emissions reach net zero that would result, at some probability, in limiting global warming to a given level, accounting for the impact of other anthropogenic emissions. {2.2.2}

Remaining carbon budget: Estimated cumulative net global anthropogenic CO\textsubscript{2} emissions from a given start date to the time that anthropogenic CO\textsubscript{2} emissions reach net zero that would result, at some probability, in limiting global warming to a given level, accounting for the impact of other anthropogenic emissions. {2.2.2}

Temperature overshoot: The temporary exceedance of a specified level of global warming.

Emission pathways: In this Summary for Policymakers, the modelled trajectories of global anthropogenic emissions over the 21st century are termed emission pathways. Emission pathways are classified by their temperature trajectory over the 21st century: pathways giving at least 50% probability based on current knowledge of limiting global warming to below 1.5°C are classified as ‘no overshoot’; those limiting warming to below 1.6°C and returning to 1.5°C by 2100 are classified as ‘1.5°C limited-overshoot’; while those exceeding 1.6°C but still returning to 1.5°C by 2100 are classified as ‘higher-overshoot’.

19 Past IPCC reports, reflecting the literature, have used a variety of approximately equivalent metrics of GMST change.
Impacts: Effects of climate change on human and natural systems. Impacts can have beneficial or adverse outcomes for livelihoods, health and well-being, ecosystems and species, services, infrastructure, and economic, social and cultural assets.

Risk: The potential for adverse consequences from a climate-related hazard for human and natural systems, resulting from the interactions between the hazard and the vulnerability and exposure of the affected system. Risk integrates the likelihood of exposure to a hazard and the magnitude of its impact. Risk also can describe the potential for adverse consequences of adaptation or mitigation responses to climate change.

Climate-resilient development pathways (CRDPs): Trajectories that strengthen sustainable development at multiple scales and efforts to eradicate poverty through equitable societal and systems transitions and transformations while reducing the threat of climate change through ambitious mitigation, adaptation, and climate resilience.
DON'T FEED THE MONSTER.
USE REUSABLE BAGS.
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Recycling Program</td>
</tr>
<tr>
<td></td>
<td>President Cazier signed the Tallories Declaration</td>
</tr>
<tr>
<td>1991</td>
<td>President Hall named Environmental Task Force</td>
</tr>
<tr>
<td>2001</td>
<td>Task force releases sustainability report</td>
</tr>
<tr>
<td>2003</td>
<td>Aggie Blue Bikes</td>
</tr>
<tr>
<td></td>
<td>RecycleMania</td>
</tr>
<tr>
<td></td>
<td>ACUPCC</td>
</tr>
<tr>
<td></td>
<td>Sustainability Council</td>
</tr>
<tr>
<td></td>
<td>Sustainability Policy</td>
</tr>
<tr>
<td>2005</td>
<td>Student Organic Farm</td>
</tr>
<tr>
<td>2007</td>
<td>Blue Goes Green</td>
</tr>
<tr>
<td></td>
<td>Student Sustainability Office</td>
</tr>
<tr>
<td>2011</td>
<td>USU STARS Silver</td>
</tr>
<tr>
<td></td>
<td>USU Bike Friendly Silver</td>
</tr>
<tr>
<td></td>
<td>Open Streets Fest</td>
</tr>
<tr>
<td>2013</td>
<td>Carshare</td>
</tr>
<tr>
<td></td>
<td>Tailgate recycling</td>
</tr>
<tr>
<td>2014</td>
<td>Compost</td>
</tr>
<tr>
<td></td>
<td>Zimride</td>
</tr>
<tr>
<td>2015</td>
<td>Food Recovery Network</td>
</tr>
<tr>
<td></td>
<td>Farmers Market</td>
</tr>
<tr>
<td></td>
<td>Planetary Thinking in the Curriculum</td>
</tr>
<tr>
<td>2016</td>
<td>Carshare</td>
</tr>
<tr>
<td></td>
<td>Tailgate recycling</td>
</tr>
<tr>
<td>2018</td>
<td>Compost</td>
</tr>
<tr>
<td></td>
<td>Zimride</td>
</tr>
<tr>
<td></td>
<td>Food Recovery Network</td>
</tr>
<tr>
<td></td>
<td>Farmers Market</td>
</tr>
<tr>
<td></td>
<td>Planetary Thinking in the Curriculum</td>
</tr>
<tr>
<td>2050</td>
<td>Carbon neutrality</td>
</tr>
</tbody>
</table>
We believe colleges and universities must exercise leadership in their communities and throughout society by modeling ways to minimize global warming emissions, and by providing the knowledge and the educated graduates to achieve climate neutrality.”
Greenhouse Gas Inventory

- Stationary Combustion: 70% (103,715 MTCO2e)
- Purchased Electricity: 21%
- Fugitive Emissions: 5%
- Waste Generated in Operations: 5%
- Mobile Combustion: 5%
- Commuting: 5%
- Air Travel: 5%

Utah State University
100% of energy used to heat buildings is natural gas
SUSTAINABILITY IN THE CURRICULUM

• 4.1% of USU courses are sustainability-related
• 7.4% of students graduate from a program that has adopted a sustainability outcome
• 74% of departments have a sustainability course
• 5000 students could be taught by one of the Planetary Thinking professors each year
<table>
<thead>
<tr>
<th>Rating</th>
<th>Score</th>
<th>Liaison</th>
<th>Submission Date</th>
<th>Executive Letter</th>
<th>Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>52.49</td>
<td>Alexi Lamm</td>
<td>Nov. 1, 2016</td>
<td>Download</td>
<td>Download</td>
</tr>
</tbody>
</table>

Institutional Characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academics</td>
<td>32.18 / 58</td>
<td>55.5%</td>
</tr>
<tr>
<td>Engagement</td>
<td>20.14 / 42</td>
<td>49.1%</td>
</tr>
<tr>
<td>Operations</td>
<td>33.16 / 71</td>
<td>46.7%</td>
</tr>
<tr>
<td>Planning & Administration</td>
<td>14.63 / 32</td>
<td>45.7%</td>
</tr>
<tr>
<td>Innovation & Leadership</td>
<td>4/4</td>
<td>100%</td>
</tr>
</tbody>
</table>

- **Utah State Univ**
- **Oregon State Univ**
- **Colorado State-Ft. Collins**
- **University of Utah**
- **Weber State**
- **Avg Doctoral Univ**