SELF-HEALING CELLULAR AUTOMATA (SHCA) FOR DEFECTIVE EMBEDDED-PROGRAM MEMORIES
Reliability of nano-scale SRAM

Random Dopant Fluctuations [1]

Sub-threshold Operation [2]

Threshold Variations [3]

Large scale massively distributed Soft Errors

0.2 V, a 0.025V variation in threshold voltage, thermal noise => mean time for a bit flip error (10^-8 seconds) [3]

Current Research – Quantity, frequency and orientation of Soft Errors

1. Do we need anything more than single bit error correction (ECC)? [4]
2. Can an error correction technique correct errors in a target circuit/system if it’s contents/circuit itself malfunction?

[4] Spica, M.; Mak, T.M., "Do we need anything more than single bit error correction (ECC)?"
Inherent Redundancy Analysis

- Error correction techniques largely depend on redundancy

- Are there systems that have Inherent Redundancy (an artifact of possibly some other optimization process)?

- Experiments (Chip Multiprocessors)
 - A case of 3 programs (three instance of matrix multiplication, FIR implementation, Integer Transform)
 - A case of 9 programs (one instance of bubble sort, selection sort, quick sort, shell sort, DWT lifting kernel, heap sort, h.264 4x4 integer transform, quick sort and cocktail sort)
Contours in Program Mixtures

Contour is a set of similar instructions spread across all program memories considered. The goal is to make all instructions participate in the contour map.
Results for Inherent Redundancy Analysis

Case 1 (matrix multiplication, FIR implementation, Integer Transform)
Average increase in code length – 71%

Case 2 (bubble sort, selection sort, quick sort, shell sort, DWT lifting kernel, heap sort, quick sort, h.264 4x4 integer transform, and cocktail sort)
Average increase in code length – 500%

Code Increase for case 1

Inter-processor compiler approach
- Programs having same RISC ISA considered
- Results differ based on size, program types
- No conclusions drawn on quality of approach
Majority Rule and Reconfigurable RT

Boolean Expression = \(c \cdot e + c \cdot n + \overline{c} \cdot s \cdot w \)

Reconfigurable Rule Table
Bit Planes & CIB

Bits in Red - Errors

SHCA
Self Healing Process

Dedicated (3x3) SHCA for CIB

9 Contour Information Banks

(NxN) x log2(m)

NxN Program Memories

b (NxN) SHCA Networks

Micron Research Center
Number of iterations vs Percentage corruption for Corrupted and perfect SHCA.

Comparison of SHCA performance with and without Self-Healing.
Comparison with other ECC Techniques

Comparison with Hierarchical Ternary TMR Voter and SEC-DED Hamming for 16 bits per instruction

Comparison with Reed Solomon* for 144 Embedded Program Memories, with 160 instructions per Memory and 12 bits per instruction**.

*Implemented using Xilinx IP cores.
**All the CIB’s are mapped on to 4-input LUTs and not BRAMs on an FPGA (Xilinx Virtex4 LX60).
Future Work

• A compile time optimization algorithm to effectively identify possible inherent redundancy with a constraint on minimal code length increase

• Efficient method to store the contour information bank

• A smart way to perform self repair of the SHCA