usuLogo

Current Research

The goal of the Nanoelectronics Laboratory at USU is to explore the science and technology to fabricate nanometer scale electronic devices and biosensors. For nanometer electronics to achieve or supersede the performance of their micrometer counterparts, atomic scale control of the materials and new device paradigms are in order. At USU Nanolab we focus on using STM to pattern single layer, ultra-dense 2D dopant sheets on Si surfaces, followed by Si or Ge epitaxial overgrowth to define nanoscale conducting pathways. These ultra-dense 2D dopant devices can be used to explore fundamental transport physics and thermal electrics.

The second theme at Nanolab is to explore biosensors. Many animals are much more sensitive to temperature, pressure, and electromagnetic radiation than humans. Can we use the advanced nanoelectronics and photonics to create functional devices to enhance our sensing and detection of pathogens? To enhance surface area, carbon nanotube forests will be employed to enhance device sensitivity. In addition to the solid-state physics, van der Waals and capillary force at micro- to nano-meter scale play important roles in devices performance in ambient. To understand them is also one of our goals.

Our research will touch the forefront of surface science, quantum devices, cryogenic carrier transport, graphite chemistry, and immunosensors.

This research has been supported by a CAREER award from NSF under grant number DMR-9875129, ARDA under ARO contract number DAAD 19-00-1-0407, DARPA-QuIST under the contract number DAAD 19-01-1-0324, NSF-NIRT under grant number CCF-0404208 and SDL IR&D grants.

Selected publication

1. T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, R. E. Walkup, "Atomic scale desorption through electronic and vibrational excitation mechanisms", Science 268, 1590 (1995).

2. J. R. Tucker, C. Wang and T.-C. Shen,"Metal silicide patterning: a new approach to silicon nanoelectronics", Nanotechnology 7, 275 (1996).

3. Ph. Avouris, R. E. Walkup, A. R. Rossi, T.-C. Shen, G. C. Abeln, J. R. Tucker, and J. W. Lyding, "STM-induced H atom desorption from Si(100): isotope effects and site selectivity", Chem. Phys. Lett. 257, 148-154 (1996).

4. T.-C. Shen, C. Wang, and J. R. Tucker, " Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning", Phys. Rev. Lett. 78, 1271-1274 (1997)

5. T.-C. Shen and Ph.Avouris, " Electron stimulated desorption by scanning tunneling microscope", Surf. Sci. 390, 35-44 (1997).

6. J. R. Tucker, and T.-C. Shen, "New approaches to silicon nanoelectronics", Future Electronics Device report 9 Suppl.2, 5-14 (1998).

7. J. R. Tucker and T. C. Shen, "Prospects for atomically ordered device structures based on STM lithography", Solid State Electronics 42, 1061-1067 (1998).

8. T.-C. Shen, "Role of scanning probes in nanoelectronics: a critical review", Surf. Rev. Lett. 7, 683-688 (2000).

9. J. R. Tucker and T.-C. Shen, "Can Single-Electron Integrated Circuits and Quantum Computers be Fabricated in Silicon?", Int. J. Circuit Theo. Appl. 28, 553-562 (2000).

10. T.-C. Shen, J.-Y. Ji, M. A. Zudov, R.-R. Du, J. Kline, J. R. Tucker, "Ultra-dense phosphorous delta-layer grown into silicon from PH3 molecular precursors", Appl. Phys. Lett. 80, 1580-1582 (2002).

11.T.-C. Shen, J. S. Kline, T. Schenkel, S. J. Robinson, J.-Y. Ji, C. L.Yang, R. R. Du, J. R. Tucker, "Nanoscale electronics based on 2D dopant patterns in silicon", J. Vac. Sci. Technol. B 22, 3182 (2004).

12. S. J. Robinson, J. S. Kline, H. J. Wheelwright, J. R. Tucker, C. L. Yang, R. R. Du, B. E. Volland, I. W. Rangelow, and T.-C. Shen, “Electron transport in laterally confined phosphorus δ-layers in silicon”, Phys. Rev. B 74, 153311 (2006).

13. J.-Y. Ji, T.-C. Shen, “A scanning tunneling microscopy study of PH3 adsorption on Si(111)-7´7 surfaces, P-segregation and thermal desorption”, Surf. Sci. 601, 1768 (2007).

14. S. J. Robinson, C. L. Perkins, T.-C. Shen, J. R. Tucker, T. Schenkel, X. W. Wang and T. P. Ma, “Low-temperature charge transport in Ga-acceptor nanowires implanted by focused-ion beams”, Appl. Phys. Lett. 91, 122105 (2007).