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Abstract All mathematical models are approximate and their usefulness depends
on our understanding the uncertainty inherent in the predictions. Uncertainties can
affect the reliability of the results at every stage of computation; they may grow or
even shrink as the solution of the model evolves. Often these inherent uncertainties
cannot be made arbitrarily small by a more complex model or additional computa-
tion and we must understand how the uncertainty in the model parameters, the initial
conditions, and the model itself, lead to uncertainties in the model predictions. This
chapter is an introductory survey of sensitivity analysis and illustrates how to define
the derivative of the model solution as a function of the model input and determine
the relative importance of the model parameters on the model predictions.

1 Introduction and Overview

Sensitivity analysis (SA) can be used to quantify the effects of uncertainties on a
model’s input parameters and the subsequent effect on the model’s output
[2, 5–10, 13, 16, 19, 21–23, 27–30, 32]. That is, SA can determine how variability
of the inputs causes variability in the outputs. The purpose of SA is to quantify this
relationship through the ubiquitous derivative of the output as a function of the input.
We provide an introductory survey of SA, how it’s is done, what can go wrong, and
apply SA to examples from epidemiology, illustrating how these tools can be used
to improve mathematical models by quantitatively identifying key aspects that lead
to strategies for reducing the spread of a disease.

1.1 Sensitivity Analysis: Forward and Adjoint Sensitivity

Consider a mathematical model consisting of user specified inputs, which are sub-
sequently utilized by the model to create output solutions. Variations in the input
parameters create variations in the output. The primary objective of SA is to
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precisely quantify the ratio of output perturbations with respect to the input per-
turbations. That is, SA provides an approach to determine which parameters have
the most/least effect on the output solution. For example, if u denotes the output
solution to a mathematical model and p denotes any of the input parameters, the
primary objective of SA is to efficiently calculate ∂u/∂p.

We introduce and apply the concepts and methodology of SA to three types of
mathematical models:

� static problems
� dynamical systems
� optimization problems

Although static problems do not change in time, they can include complex
relationships between parameters and the solution. As a typical example, con-
sider solving a system of linear equations Au = b. SA can determine how the
solution u depends on perturbations to the coefficients ai j or the right-hand side
terms bi . Perturbations to these input parameters will directly affect the solution
and raises the question: Which of these parameters has the most effect on the
solution? To answer this question, we calculate the derivative expression ∂u/∂p,
where p represents any of the ai j or bi by introducing an auxiliary problem-the
adjoint problem. This adjoint problem will allow us to efficiently find the desired
derivative.

The same type of situation occurs for the common eigenvalue problem Au =
λu that arises, for example, in determining the reproductive number in epidemic
models. Since the eigenstructure of this linear operator depends on the under-
lying parameter space, uncertainty in the ai j produces uncertainty in the eigen-
values and eigenvectors of A. SA is an approach that can define how λ or u
will change if the elements of the matrix A change as measured by: ∂λ/∂ai j

and ∂u/∂ai j . We will use the adjoint SA methodology to derive explicit formula
for the derivatives of the eigenvalue and eigenvector. In epidemic models, the
elements of A are often functions of the parameters, such as the infectivity or pop-
ulation size, in the underlying mathematical model and SA is used to determine
how the eigenvalues change as a function of, say, a change in the transmission
rate.

Epidemiological phenomena are often modeled by time dependent ordinary
differential equations (ODEs), or if there is spatial, age, or other relational depen-
dences, by partial differential equations (PDEs). If the time or spatial dependence
is formulated on a lattice structure, then difference equations can be used as the
mathematical model. Often the parameters or initial conditions (IC’s) are not known
exactly. Again, SA is an approach that can quantify how the uncertainty in input
values is related to uncertainty in the model output u = u(t). As in the static
case, we will introduce an appropriate auxiliary problem, the adjoint problem. When
chosen properly, the adjoint formation can reduce the computational complexity to
answer targeted questions when the full SA is not needed, or is not computationally
feasible.
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1.2 Parameter Estimation

Parameter estimation is needed:

� when there is observational data with significant errors,
� when there are unknown or unspecified parameters, in the model that must be

estimated (parameter estimation (PE)),
� to quantify the inevitable effects of uncertainty, in the observed data set and on

the specification of parameter values, which ultimately leads to uncertainty in the
model prediction (forward sensitivity analysis (FSA)), and

� to determine which regions in time or parameter space have the most effect on
the model prediction (adjoint sensitivity analysis (ASA)).

Consider the graphical representation in Fig. 1 of the overall structure of the
FSA problem, where ODS represents observational data set, PS denotes the param-
eter space, and MP represents the set of model predictions. Notice that the PS is
partitioned into two disjoint sets; one containing those parameters for which we
currently do not have specified values: {p1, . . . , pk}, and the other set of parameters
which do have assigned values {pk+1, . . . , pk+l}. The application of a computational
algorithm whereby one uses the incomplete ODS and obtains specific values for the
unknown parameters can be viewed as the mapping F : ODS �→ {p1, . . . , pk}. This
is the objective of data assimilation. Once the unknown parameters are specified,
the mathematical model can be evaluated providing the MP, that is, G : PS �→ MP.

Measurement errors in the ODS (shown as the dashed curves in Fig. 2) introduce
uncertainties produce uncertainty in the PS, and hence uncertainty in the MP.

ODS MP

{P1,.....PK}

{PK+1,.....PK+L}

PS

Fig. 1 Using the observational data set (ODS) to obtain values for unspecified parameters
{p1, . . . , pk} in the parameter space (PS), which allows evaluation of the epidemiological model
to obtain the model prediction (MP)

ODS + δODS PS + δPS MP + δMP

{P1,.....PK}

{PK+1,.....PK+L}

Fig. 2 Uncertainty in the ODS, (shown as dashed curves), produces uncertainty in the PS, which
leads to uncertainty in the MP of the epidemiological model
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We will describe local SA approaches to estimating the change in the solution
resulting from small changes in nominal fixed values of the defining parameters.
This introduction to SA will not discuss in detail the methodology of data assim-
ilation, as applied to parameter estimation in epidemiology. However, we will
provide the basic tools needed for parameter estimation. Furthermore, global SA
(uncertainty quantification) [28] issues such as the sensitivity of bifurcation points,
critical/degenerate points, extrema, variance-based methods such as Monte Carlo
methods or the Fourier Amplitude Sensitivity Tests, Latin Hypercube or Fractional
Factorial sampling, or Bayesian SA.

2 Sensitivity Analysis

2.1 Normalized Sensitivity Index

The fundamental objective of SA is to quantitatively estimate how uncertainty of
inputs gives rise to uncertainties of the model outputs. In particular, we describe
FSA and ASA for deterministic (non-stochastic) mathematical models.

FSA quantitatively determines how the output solution u, to our mathematical
model, or some response function(al) J (u), changes as small perturbations are made
to a model parameter p, as is shown in Fig. 3. If the solution and functional are
differentiable wrt. a parameter p, then in FSA we calculate the derivatives ∂u/∂p
and ∂ J (u)/∂p and define the normalized sensitivity indexes (SI):

Su p := lim
δp→0

(
δu

u

)(
δp

p

)−1

=
( p

u

) ∂u

∂p
(1)

SJp := lim
δp→0

δ J

J

(
δp

p

)−1

=
(

J

p

)
∂u

∂p
. (2)

The normalized SI [13, 28–30] measure the relative change in the output δu/u or
δ J/J , wrt. a small relative change to the input δp/p.

Fig. 3 The forward problem
(FP-top figure) takes nominal
input parameters p and
produces the associated
output solution u. Forward
sensitivity analysis
(FSA-bottom figure)
introduces perturbations to
the input parameters, via δp
and quantifies the subsequent
perturbations to the output
solution via δu

P UFP

P + δP U + δUFP

FSA
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Fig. 4 Adjoint sensitivity
analysis (ASA) introduces
perturbations to the output
solution, via δu and
quantifies how these changes
are related to perturbations in
the input parameters via δp

P + δq U + δvFP

ASA

One of the pitfalls in applying the results of SA is in not paying close attention to
the relationships between the signs of S, u, δu, p, and δp. Often the output variable
u is nonnegative, such as the infected population in an epidemic model and, without
loss of generality, we will assume that the parameters and output variables in this
article are all positive. When this is not the case, then the analysis must pay close
attention to signs of the variables.

If the mathematical model is a dynamical system, then the SI can depend on
time and the relative importance of the parameters can also depend on time. For
example, for t ≤ tc, the parameter p1 might have more affect on the solution than
the parameter p2, whereas for t > tc the roles of importance might reverse. This
often occurs when comparing the relative importance of model parameters in early
and late stages of an epidemic.

Whereas, for dynamical systems, FSA measures the future change in the solution
caused by small changes in the parameters, ASA [12, 21–23] looks back in time, as
shown in Fig. 4.

2.2 Motivation for Sensitivity Analysis

Consider the two species symbiotic population model [26] given by

du1

dt
= u1(1 − u1 − au2) (3)

du2

dt
= bu2(1 − u2 − cu1), (4)

where the parameters a, b, and c are nonnegative, ac is constant, and we are given
the initial population of the two species as u1(0) and u2(0). For physical reasons, we
require that the parameters satisfy the conditions 0 < a, c < 1.

Some typical questions one might ask are

� Which of the parameters has the most influence on the value (not stability) of the
equilibrium point(s)?

� Which of the parameters has the most influence on the stability/instability of the
equilibrium points?

� Which of the parameters has the most influence on the time dependent solutions
u1 and u2?

For more sophisticated models [1], numerous other relevant questions could easily
come to mind. We will study this problem in more detail in the following sections.
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3 Linear System of Equations and Eigenvalue Problem

3.1 Linear System of Equations: Symbiotic Population

For the two species symbiotic population model given above, let us determine which
of the three parameters has the most influence on the value (not stability) of the
equilibrium point(s) (ū1, ū2) of Equations (3, 4). In other words, we would like to
know how the solutions (ū1, ū2) of the steady state system

ū1(1 − ū1 − aū2) = 0

bū2(1 − ū2 − cū1) = 0

are affected by changes to the two parameters a or c.
Solving this nonlinear system, we find the four equilibrium points

(ū1, ū2) =
{

(0, 0), (0, 1), (1, 0),

(
1 − a

1 − ac
,

1 − c

1 − ac

)}
.

Notice that the extinct and single species equilibrium points (0, 0), (0, 1), and (1, 0)
are independent of the a or c and therefore are unaffected by perturbations to
these parameters. The two species equilibrium point however does depend on these
parameters in which case we find the normalized relative sensitivity indices to be

a

ū1

∂ ū1

∂a
= − a(1 − c)

(1 − a)(1 − ac)
,

a

ū2

∂ ū2

∂a
= ac

1 − ac
,

c

ū1

∂ ū1

∂c
= ac

1 − ac
, and

c

ū2

∂ ū2

∂c
= − c(1 − a)

(1 − c)(1 − ac)
.

Notice that the sensitivity of u1 wrt. c is the same as it is for u2 wrt. a.
The relative importance, as measured by the sensitivity indices, may be different

in different regions of the parameter space. For this example, consider the sensitivity
of u1 wrt. a and u2 wrt. c, where we want to know what the ordering is;

a

ū1

∂ ū1

∂a
?

c

ū2

∂ ū1

∂c

− a(1 − c)

(1 − a)(1 − ac)
? − c(1 − a)

(1 − c)(1 − ac)
1 − c√

c
?

1 − a√
a

.

Here the symbol ? is an inequality symbol, such as < or >. Since the function
f (x) := (1− x)/

√
x , for x ∈ (0, 1) is a strictly decreasing function, if x1 < x2, then
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f (x1) > f (x2). In other words, the relative importance, via the sensitivity indices,
depends on whether c > a or c < a.

Although we now have a methodology for determining the sensitivity of the
equilibrium points, even more information can be gleaned by using SA for the
evolution of the solution. In simpler examples the closed form solution is easily
found and elementary calculus can be applied to find the associated sensitivity
indices.

Let us restate and reformulate the problem of interest, that is to obtain the deriva-
tives ∂ ū1/∂p and ∂ ū2/∂p, where p represents any of the three parameters a, b or
c. Even when the closed form solutions for the equilibrium points is not known,
then we can directly construct the FSA by differentiating the equilibrium problem.
The associated forward sensitivity equations (FSE) containing these derivatives are
found by taking the partial derivatives ∂/∂p of both equilibrium equations, and
applying the standard chain rule, to get the linear system

Du
∂u
∂p

= −∇p F,

where, the notation we use will become apparent shortly,

Du =
(

1 − 2ū1 − aū2 −aū1

−bcū2 b(1 − 2ū2 − cū1)

)
,

∂u
∂p

=

⎛
⎜⎜⎝

∂ ū1

∂p

∂ ū2

∂p

⎞
⎟⎟⎠ ,

∇p F =

⎛
⎜⎜⎝

−ū1ū2
∂a

∂p

−ū1ū2
∂c

∂p

⎞
⎟⎟⎠ .

One could calculate D−1
u directly, however for large systems of equations this

procedure is both analytically difficult or computationally expensive. Direct inver-
sion of the linear operator should always be avoided, except in very small systems.
Instead for large systems, we obtain D−1

u ∇p F by introducing an auxiliary problem
called the adjoint problem.

Before describing the adjoint problem, we make the important observation that
the system of equations defining the derivative du/dp is always a linear system,
even though the original system was nonlinear. This particular example suggests
that although the equilibrium point(s) could be solutions to nonlinear equations, the
FSE’s are linear in the derivative terms. To see this is true in general, consider the
2-D system

du1

dt
= f1(u1, u2; p)

du2

dt
= f2(u1, u2; p)
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where f1 and f2 are differentiable in u1, u2 and p. Since the equilibrium points are
solutions of the nonlinear system

f1(ū1, ū2; p) = 0

f2(ū1, ū2; p) = 0

then the associated FSE’s is the linear system

Du
∂u
∂p

= −∇p F, (5)

where

Du =

⎛
⎜⎜⎜⎝

∂ f1

∂ ū1

∂ f1

∂ ū2

∂ f2

∂ ū1

∂ f2

∂ ū2

⎞
⎟⎟⎟⎠ ,

∂u
∂p

=

⎛
⎜⎜⎜⎝

∂ ū1

∂p

∂ ū2

∂p

⎞
⎟⎟⎟⎠ , ∇p F =

⎛
⎜⎜⎜⎝

∂ f1

∂p

∂ f2

∂p
.

⎞
⎟⎟⎟⎠ .

The notation chosen is suggestive: Du denotes the Jacobian wrt. the variables u and
∇p F denotes the gradient wrt. the parameters p.

Thus, the FSE for the equilibrium solutions of the IVP can be written in the
general form

Aw = b, (6)

where A is a real N × N nonsymmetric and nonsingular matrix, which in this exam-
ple is the Jacobian matrix. Let p denote any of the parameters ai j or bi and assume
that for the specified values of p, the forward solution w is a differentiable function
of the parameters and is sufficiently far away from any singularities in the parameter
space, then the FSE are given by

A
∂w
∂p

= ∂b
∂p

− ∂A
∂p

w. (7)

Since perturbations to the parameter p produces perturbations in the forward solu-
tion w, FSA requires the calculation of the derivative ∂w/∂p. This FSE equation
could be solved by premultiplying by the matrix inverse A−1, however, for larger
systems, this procedure is computationally expensive, often numerically unstable,
and should be avoided if at all possible.

The ASA accomplishes the same goal, while avoiding computing A−1, by
introducing an auxiliary problem which isolates how the solution depends on the
parameters; that is, ∂w/∂p. This is accomplished by defining an appropriate inner
product and cleverly choosing conditions so as to isolate the desired quantity. For
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this simple case, we use the usual vector inner product for standard Euclidean space
and premultiply the FSE by some, as of yet unspecified, nontrivial vector vT

vT A
∂w
∂p

= vT

(
∂b
∂p

− ∂A
∂p

w
)

. (8)

Now consider the 1 × N vector cT := vT A, or written as the associated adjoint
problem

AT v = c. (9)

Since we wish to isolate the derivative term ∂w/∂p, choose N forcing vectors of the
form cT

i = (0 · · · 0 1 0 · · · 0
)
, where the 1 is located in the i th column. This forces

the product vT A to project out the desired components ∂wi/∂p, for i = 1, . . . , N ,
in which case

∂wi

∂p
= vT

i

(
∂b
∂p

− ∂A
∂p

w
)

. (10)

This particular choice for the adjoint problem leads to an intimate relation-
ship between the inverse matrix A−1 and the matrix of adjoint vectors V :=(
v1 v2 · · · vN

)
, namely VT = A−1. The relationships between the forward and

adjoint problems and sensitivity equations, in this example, shown in Fig. 5, illus-
trates connections between the forward and adjoint problem.

3.2 Stability of the Equilibrium Solution: The Eigenvalue Problem

The stability of the equilibrium solution of (3) and (4) depends upon the eigenval-
ues of the Jacobian of the linearized system at the equilibrium. These eigenvalues
are functions of the parameters p. Therefore, we can use sensitivity analysis to

Fig. 5 The relationships
between the forward
sensitivity and associated
adjoint problems creates a
self-consistant framework for
sensitivity analysis
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determine how the stability of an equilibrium point is affected by changes to the
parameters. The eigenvalues λ of the Jacobian

A =
(

1 − 2ū1 − aū2 −aū1

−bcū2 b (1 − 2ū2 − cū1)

)
(11)

could be found by constructing the characteristic polynomial and solving the asso-
ciated characteristic equation

p(λ) = λ2 − (1 − 2ū1 − aū2 + b(1 − cū1 − 2ū2) λ − abcū1ū2 and p(λ) = 0.

For this simple problem, the eigenvalues can be explicitly found, and subsequently
the derivatives ∂λ/∂p can be calculated. However, as the system of differential equa-
tions increases, so does the degree of the associated characteristic polynomial and
this approach becomes impracticable. The roots of high degree polynomials cannot
be defined analytically, and the numerical methods for finding these roots often
suffer from numerical instabilities.

As was done in the previous example of finding the sensitivity of a linear
system of equations, we proceed to find the sensitivity of the right eigenvalue
problem1

Au = λu (12)

where A is an N × N nonsymmetric matrix with distinct eigenvalues and an associ-
ated complete, nonorthonormal set of eigenvectors, which span R

N . This particular
example will shed light on a significant inherent limitation of ASE that is rarely
discussed, much less emphasized.

Since the eigenvalues λ and the eigenvectors u depend on the coefficients ai j ,
differentiate the right eigenvalue problem to get the FSE

A
∂u
∂ai j

+ ∂A
∂ai j

u = λ
∂u
∂ai j

+ ∂λ

∂ai j
u. (13)

The difficulty that arises in this example is that there are two unknown derivatives of
interest, the derivative of the eigenvalues ∂λ/∂ai j and the derivative of the eigenvec-
tors ∂u/∂ai j . The purpose of the adjoint methodology is to produce one, and only
one, additional auxiliary problem. That is, a single associated adjoint problem can
only be used to find the derivative of the eigenvalues or the derivative of the eigen-
vectors, but not both simultaneously. As we will show, using the adjoint problem to
find ∂λ/∂ai j precludes the ability to find ∂u/∂ai j , unless additional information is
provided.

1 As we will see shortly, the associated left eigenvalue problem is the adjoint problem for (12),
namely AT v = λv.
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Let v be some nonzero, as yet unspecified, vector and take the inner product with
the FSE (13) to get

∂λ

∂ai j
〈u, v〉 =

〈
∂A
∂ai j

u, v
〉
+
〈
(A − λI)

∂u
∂ai j

, v
〉
. (14)

Because (A − λI)T = AT −λI, we can use the Lagrange identity for matrices, under
the usual inner product, to get

〈
(A − λI)

∂u
∂ai j

, v
〉

=
〈

∂u
∂ai j

,
(
AT − λI

)
v
〉
.

Now annihilate the second inner product by forcing the adjoint condition

AT v = λv, (15)

which is known as the left eigenvalue problem. For the original eigenvalue problem,
the left eigenvalue problem is the associated adjoint problem. (For more details, see
[18, 32].)

The properties of the left and right eigenvalue problems include:

� If the right eigenvalue problem has a solution, then the left eigenvalue also has a
solution.

� The right and left eigenvectors u and v are distinct, for a specified eigenvalue λ.
� The right eigenvectors u(k) = (u1

(k) u2
(k) · · · uN

(k)
)T

and left eigenvectors v(l) =(
v1

(l) v2
(l) · · · vN

(l)
)T

are orthogonal for k �= l and
〈
u(k), v(k)

〉 �= 0 for k = l.
� Using the previous result, the right and left eigenvectors can be normalized, i.e.,〈

u(k), v(k)
〉 = 1.

Using the left eigenvalue problem (adjoint problem), Equation (14) reduces to

∂λ

∂ai j
〈u, v〉 = vi u j .

Since the right and left eigenvectors are normalized, the explicit expression for the
derivative of the eigenvalue wrt. the coefficients ai j is

∂λ

∂ai j
= vi u j . (16)

To find an explicit expression for ∂u/∂ai j , we must introduce additional infor-
mation. The reason for this diversion is that no new information can be gleened
about ∂u/∂ai j from the adjoint problem. The key to making further progress is to
recall that we have assumed that the N × N matrix A has N distinct eigenvalues, in
which case there exists a complete set of N eigenvectors. We now make use of the
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fact that any vector in C
N can be expressed as a linear combination of the spanning

eigenvectors. Since ∂u/∂ai j is an N × 1 vector, we can write this derivative as a
linear combination of the eigenvectors.

It will be helpful to introduce some additional notation describing the right and
left eigenvector matrices U and V, whose columns are the individual eigenvectors
u(k) and v(k) respectively, and let Λ be the diagonal matrix of eigenvalues λk , that is

U := (u(1) u(2) · · · u(N )
)
, V := (v(1) v(2) · · · v(N )

)
and Λ :=

⎛
⎜⎜⎜⎝

λ1 0
λ2

. . .
0 λN

⎞
⎟⎟⎟⎠ .

Using this notation, the right and left eigenvalue problems can be written as

AU = UΛ and AT V = VΛ. (17)

Earlier we forced the right and left eigenvectors to be normalized, and therefore
the matrix of eigenvectors satisfy the identity

VT U = I. (18)

The derivative of the matrix of eigenvectors can written as a linear combination of
the eigenspace;

∂U
∂ai j

= UC . (19)

This equation defines the coefficient matrix

C :=

⎛
⎜⎜⎜⎝

c1
(1) c1

(2) c1
(3) · · · c1

(N )

c2
(1) c2

(2) c2
(3) · · · c2

(N )

...
...

...
cN

(1) cN
(2) cN

(3) · · · cN
(N )

⎞
⎟⎟⎟⎠ , (20)

where for a fixed eigenvector u(k), the derivative can be expanded as the sum

∂u(k)

∂ai j
= c1

(k)u(1) + · · · + ck
(k)u(k) + · · · cN

(k)u(N ). (21)

We now describe how to define the coefficients cl
(m).

Differentiating the right eigenvector matrix Equation (17) gives

A
∂U
∂ai j

+ ∂A
∂ai j

U = U
∂Λ

∂ai j
+ ∂U

∂ai j
Λ. (22)
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Using Equation (17) and (19) and rearranging we get

U [Λ, C] = U
∂Λ

∂ai j
− ∂A

∂ai j
U, (23)

where [·, ] denotes the commutator bracket [Λ, C] := ΛC − CΛ.
Next, premultiply by the left eigenvector matrix and use the normalization

condition, this equation reduces to

[Λ, C] = ∂Λ

∂ai j
− VT ∂A

∂ai j
U. (24)

Expanding the commutator bracket we find that

[Λ, C] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 c1
(2)(λ1 − λ2) c1

(3)(λ1 − λ3) · · · c1
(N )(λ1 − λN )

c2
(1)(λ2 − λ1) 0 c2

(3)(λ2 − λ3) · · · c2
(N )(λ2 − λN )

c3
(1)(λ3 − λ1) c3

(2)(λ3 − λ2) 0 · · · c3
(N )(λ3 − λN )

...
. . .

...

cN
(1)(λN − λ1) cN

(2)(λN − λ2) cN
(3)(λN − λ3) · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(25)
Since the right side of Equation (24) is known, and because we assumed that the
eigenvalues are distinct, we can solve for the off-diagonal coefficients

cl
(m) = − 1

λl − λm

[
VT ∂A

∂ai j
U
]

lm

for l �= m. (26)

The next task is to find the values of the diagonal coefficients. Once again, we
make use of the fact that the eigenvectors form a basis for C

N . To solve for the
scalar diagonal coefficients ck

(k) in (21), we first transform this vector equation to a
scalar equation by normalizing the right eigenvectors. That is, we force the condi-
tion
〈
uk, uk

〉 = 1. Next, we fix the indexes i, j and differentiate this normalization
condition to get

ukT ∂uk

∂ai j
+ ∂ukT

∂ai j
uk = 0.

Because

∂ukT

∂ai j
uk = ukT ∂uk

∂ai j
,
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it follows that uk and ∂uk/∂ai j are orthogonal, in which case we obtain the N
equations

〈
∂uk

∂ai j
, uk

〉
= 0, for k = 1, . . . N . (27)

Next premultiply, the summed version of the derivative of the eigenvector (21), by
u(k) to get

c1
(k)〈u(1), u(k)〉 + · · · + ck

(k)〈u(k), u(k)〉 + · · · cN
(k)〈u(N ), u(k)〉 = 0.

Since the individual eigenvectors have been normalized, we can solve for the
diagonal coefficients in terms of the known off diagonal coefficients:

ck
(k) = −

N∑
i=1
i �=k

ci
(k)〈u(i), u(k)〉. (28)

4 Dimensionality Reduction

When considering a mathematical model where some of the variables may be redun-
dant, one would like to be able to identify, with confidence, those variables that can
be safely eliminated without affecting the validity of the model. To not inadvertently
eliminate significant variables, one must identify groups of variables that are highly
correlated. In essence, one is trying to identify those aspects of the model that are
comprised of strongly interacting mechanisms. A problem arises when one uses
data, which contain errors or noise, to estimate the correlation between these vari-
ables and use these estimates to determine which variables can be safely eliminated.
Thus, uncertainty in the data can create uncertainty in the correlation estimates and
ultimately in the reduced model.

For example, consider an imaginary disease for which a specific blood test can,
with certainty, identify whether the patient has or does not have this disease. Now
suppose that there exists a medication whose sole purpose is to treat this particular
disease. When constructing a model of this scenario, the number of prescriptions
for this medication and the positive blood test results are highly correlated. Assum-
ing that the examining physician always prescribes this medication the correlation
would in fact be 1.0. The information contained in these two data sets are redun-
dant. Either the number of positive blood test results or the number of prescriptions
provides sufficient information about the number of positively diagnosed infections.
Taking a geometric perspective of this scenario, since the two data sets are so highly
correlated, a projection from a 2-dimensional parameter space to a 1-dimensional
space would be appropriate.

Now consider the more realistic scenario where public health officials are mon-
itoring a seasonal outbreak of a disease. Syndromic surveillance or biosurveil-
lance data of clinical symptoms such as fever, number of hospital admissions,
over-the-counter medication consumption, respiratory complaints, school or work
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absences, etc., while readily available, does not directly provide accurate numer-
ical quantification of the size of the outbreak. Furthermore, “noise” in the data
causes inaccuracy of any specific numerical assessments or predictions. Addition-
ally, symptoms such as fever and respiratory complaints have different levels of
correlation for different diseases, and therefore difficulties arise in determining
which factors are redundant and which factors are essential to the model. In other
words, it would be desirable to identify the highly correlated variables, in which
case we could reduce the dimension of the data, without significantly degrading the
validity of the model, and minimize the effects of noise.

4.1 Principal Component Analysis

Principal component analysis (PCA) is a powerful method of modern data analysis
that provides a systematic way to reduce the dimension of a complex data set to
a lower dimension, and oftentimes reveals hidden simplified structures that would
otherwise go unnoticed.

Consider an M × N matrix of data measurements A with M data types and N
observations of each data type. Each M×1 column of A represents the measurement
of the data types at some time t for which there are N time samples. Since any M ×1
vector lies in an M-dimensional vector space, then there exists an M-dimensional
orthonormal basis that spans the vector space. The goal of PCA is to transform the
noisy, and possibly redundant data, set to a lower dimensional orthonormal basis.
The desired result is that this new basis will effectively and successively filter out
the noisy data and reveal hidden structures among the data types.

The way this is accomplished is based on the idea of noise, rotation, and covari-
ance. When performing measurements, the problem of quantifying the effect of
noise has on the data set is often defined by the signal-to-noise ratio (SNR) and
is defined as the ratio of variances

SNR := σ 2
Signal

σ 2
Noise

. (29)

If the SNR is large, then the signal/measurements are accurate; whereas, if SNR is
small, then the data is significantly contaminated by noise. Since one of the goals
of PCA is transform the data to a basis that minimizes the effect of noise, PCA
increases the SNR by maximizing the signal variance. Secondly, data identified
having high covariance is used to guide in reducing the dimension of the data set.

4.2 Singular Value Decomposition (SVD)

Let A be a real M × N matrix and let r denote the rank of A. Recall some essential
geometric properties of matrices:

1. The matrix A maps the unit sphere in R
N and into a hyperellipsoid in R

M .
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2. The directions of the hyper-axes of the ellipsoid are denoted by the orthogonal
basis {u(k)}, for k = 1, . . . M (singular vectors).

3. The stretching/compression factors, (singular values) are denoted by {σk}.
4. The vectors σku(k) define the principal semi-axes of the hyperellipsoid.

The SVD defines the particular factorization of A, in terms of the above geometric
properties, as

A = U Σ∼ VT (30)
where

� the M × M matrix U is unitary (i.e., UT U = I, where T denotes transpose and I
is the M × M identity matrix) and the columns u(k) form an orthogonal basis for
R

M ,
� similarly, the N × N matrix V is also unitary and the column v(k) form an

orthogonal basis for R
N , and

� the M × N diagonal matrix Σ∼ is

Σ∼ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

σr

0
. . .

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where the singular values are ordered as σ1 > σ2 > · · · > σr > σr+1 = · · · =
σp = 0 and p := min(M, N ).

The way to find the M columns u of U, and the N columns v of V, where

U := (u(1) u(2) · · · u(M)
)
, V := (v(1) v(2) · · · v(N )

)

is to solve the left and right eigenvalue problems

Av = σu, and AT u = σv. (32)

Note that because the columns of U and V are the eigenvectors of AAT, the
norms of these matrix vector products are the same as the norms of the eigenvectors.

4.3 Sensitivity of SVD

Because the singular values σ and the singular vectors u and v depend on the coef-
ficients ai j , we can differentiate the left and right eigenvalue problems (32) to get
the FSE
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A
∂v
∂ai j

+ ∂A
∂ai j

v = σ
∂u
∂ai j

+ ∂σ

∂ai j
u, (33)

AT ∂u
∂ai j

+ ∂AT

∂ai j
u = σ

∂v
∂ai j

+ ∂σ

∂ai j
v. (34)

Because the matrices U and V are unitary, the associated singular vectors u and
v are normalized, i.e.,

〈u, u〉 = 〈v, v〉 = 1.

Using this result we find the useful orthogonality condition

uT ∂u
∂ai j

= vT ∂v
∂ai j

= 0. (35)

Premultiply the left FSE given in (33) by uT and, using the orthogonality and
normalizing conditions, the FSE reduces to

uT A
∂v
∂ai j

+ uT ∂A
∂ai j

v = ∂σ

∂ai j
. (36)

The right eigenvalue problem, rewritten as uT A = σvT , is used with the
orthogonality condition (35) to eliminate the first term in (36) to give:

∂σ

∂ai j
= uT ∂A

∂ai j
v

= uiv j . (37)

for i = 1, . . . , M and j = 1, . . . , N

Now using the matrix notation, the left and right eigenvalue problems can be
written in matrix form

A V = U Σ∼ and AT U = V Σ∼
T . (38)

Since the derivative of the singular vector is in R
M , it can be written as a linear

combination of the singular vectors, define the coefficient matrix as

C :=

⎛
⎜⎜⎜⎝

c1
(1) c1

(2) c1
(3) · · · c1

(M)

c2
(1) c2

(2) c2
(3) · · · c2

(M)

...
...

...
cM

(1) cM
(2) cM

(3) · · · cM
(M)

⎞
⎟⎟⎟⎠ , (39)
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so that the derivative of the eigenvector matrix can be written as

∂U
∂ai j

= UC. (40)

Differentiating the right eigenvector matrix equation gives

AT ∂U
∂ai j

+ ∂AT

∂ai j
U = V

∂Σ∼
T

∂ai j
+ ∂V

∂ai j
Σ∼

T . (41)

Using (40), we get

AT UC − ∂V
∂ai j

Σ∼
T = V

∂Σ∼
T

∂ai j
− ∂AT

∂ai j
U. (42)

To replace the derivative ∂V/∂ai j in terms of the product UC, differentiate the left
eigenvalue problem to obtain

A
∂V
∂ai j

= U
∂Σ∼
∂ai j

+ UCΣ∼ − ∂A
∂ai j

V.

Next, premultiply Equation (42) by matrix A, and using this result gives

AAT UC − A
∂V
∂ai j

Σ∼
T = AV

∂Σ∼
T

∂ai j
− A

∂AT

∂ai j
U

AAT UC −
(

U
∂Σ∼
∂ai j

+ UCΣ∼ − ∂A
∂ai j

V

)
Σ∼

T = AV
∂Σ∼

T

∂ai j
− A

∂AT

∂ai j
U.

Rearranging so as to isolate the expressions containing UC, on the left side of the
equation, we get

AAT UC − UCΣ∼Σ∼
T = AV

∂Σ∼
T

∂ai j
− A

∂AT

∂ai j
U + U

∂Σ∼
∂ai j

Σ∼
T − ∂A

∂ai j
VΣ∼

T .

Consider the pair of expressions on the left side of this equation

AAT UC − UCΣ∼Σ∼
T = AVΣ∼

T C − UCΣ∼Σ∼
T

= UΣ∼Σ∼
T C − UCΣ∼Σ∼

T

= U
[
Σ∼Σ∼

T , C
]
,
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where [·,·] denotes the commutator bracket
[
Σ∼Σ∼

T , C
]

:= Σ∼Σ∼
T C−CΣ∼Σ∼

T . Next,

consider the two expressions

AV
∂Σ∼

T

∂ai j
+ U

∂Σ∼
∂ai j

Σ∼
T = UΣ∼

∂Σ∼
T

∂ai j
+ U

∂Σ∼
∂ai j

Σ∼
T

= U
∂

∂ai j

[
Σ∼Σ∼

T
]
.

Now consider the remaining two expressions

A
∂AT

∂ai j
U + ∂A

∂ai j
VΣ∼

T = A
∂AT

∂ai j
U + ∂A

∂ai j
AT U

=
(

∂

∂ai j

[
AAT ])U.

Using these simplifications in notation gives the system of equations in ck
(l)

U
[
Σ∼Σ∼

T , C
]

= U
∂

∂ai j

[
Σ∼Σ∼

T
]

−
(

∂

∂ai j

[
AAT

])
U.

Using the unitary condition UT U = I, where I is the M × M identity matrix, this
equation simplifies to the final form

[
Σ∼Σ∼

T , C
]

= ∂

∂ai j

[
Σ∼Σ∼

T
]

− UT

(
∂

∂ai j

[
AAT

])
U. (43)

Expanding the commutator bracket we find that

[
Σ∼Σ∼

T , C
]

kl
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 k = l or k and l > r ,

ck
(l)
(
(σk)2 − (σl)2

)
k, l ≤ r,

−ck
(l)(σl)2 l ≤ r and k ≥ r + 1,

ck
(l)(σk)2 k ≤ r and l ≥ r + 1.

(44)

Since the right side of Equation (43) is known, and since we have assumed that the
singular values are distinct, we can solve for the off-diagonal coefficients.

The final task is to find the values of the diagonal coefficients. Once again, we
make use of the fact that the singular vectors {u(k)} form a basis for R

M , that is, for
a fixed eigenvector u(k), the derivative is expanded as the sum

∂u(k)

∂ai j
= c1

(k)u(1) + · · · + ck
(k)u(k) + · · · cM

(k)u(M).
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When we use the orthogonality of the derivative of the singular vector with the
singular vector we get

c1
(k)〈u(1), u(k)〉 + · · · + ck

(k)〈u(k), u(k)〉 + · · · cM
(k)〈u(M), u(k)〉 = 0.

Since the individual singular vectors are orthonormal, the diagonal coefficients are
all identically zero.

Using this same approach, we can find ∂V/∂ai j . To accomplish this, write this
derivative as a linear combination of the singular vectors v(k)

∂V
∂ai j

= VD,

where

D :=

⎛
⎜⎜⎜⎝

d1
(1) d1

(2) d1
(3) · · · d1

(N )

d2
(1) d2

(2) d2
(3) · · · d2

(N )

...
...

...
dN

(1) dN
(2) dN

(3) · · · dN
(N )

⎞
⎟⎟⎟⎠ ,

and proceed as was done above.

5 Initial Value Problem

We now extend the initial value problem (IVP) (3) and (4) as the more general
system of equations

du1

dt
= f1(u1, u2, p1, p2, p3) u1(0) = u1

(0) (45)

du2

dt
= f2(u1, u2, p1, p2, p3) u2(0) = u2

(0) (46)

where the u1(t) and u2(t) denote the time dependent forward solutions, p1, p2, p3

denote some fixed or steady state parameters, u1
(0), u2

(0) are the initial conditions
(IC’s), and t ∈ [0, b]. To determine the sensitivity of an associated functional, or
response function, of the solution, we consider a generic form that encompasses
most functionals that one encounters [2, 13];

J [u] :=
b∫

t=0

g(u1, u2, p1, p2, p3) dt + h(u1, u2, p1, p2, p3)

∣∣∣∣
t=b

. (47)
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Here the functions g and h are sufficiently differentiable in their arguments. We
wish to determine how the functional J is affected by changes to the parameters or
IC’s. Specifically, we must calculate the derivatives

∂ J

∂p1
=

b∫

t=0

(
∂g

∂u1

∂u1

∂p1
+ ∂g

∂u2

∂u2

∂p1
+ ∂g

∂p1

)
dt

+
(

∂h

∂u1

∂u1

∂p1
+ ∂h

∂u2

∂u2

∂p1
+ ∂h

∂p1

) ∣∣∣∣
t=b

∂ J

∂p2
=

b∫

t=0

(
∂g

∂u1

∂u1

∂p2
+ ∂g

∂u2

∂u2

∂p2
+ ∂g

∂p2

)
dt

+
(

∂h

∂u1

∂u1

∂p2
+ ∂h

∂u2

∂u2

∂p2
+ ∂h

∂p2

) ∣∣∣∣
t=b

∂ J

∂p3
=

b∫

t=0

(
∂g

∂u1

∂u1

∂p3
+ ∂g

∂u2

∂u2

∂p3
+ ∂g

∂p3

)
dt

+
(

∂h

∂u1

∂u1

∂p3
+ ∂h

∂u2

∂u2

∂p3
+ ∂h

∂p3

) ∣∣∣∣
t=b

∂ J

∂u1
(0)

=
b∫

t=0

(
∂g

∂u1

∂u1

∂u1
(0)

+ ∂g

∂u2

∂u2

∂u1
(0)

)
dt

+
(

∂h

∂u1

∂u1

∂u1
(0)

+ ∂h

∂u2

∂u2

∂u1
(0)

) ∣∣∣∣
t=b

∂ J

∂u2
(0)

=
b∫

t=0

(
∂g

∂u1

∂u1

∂u2
(0)

+ ∂g

∂u2

∂u2

∂u2
(0)

)
dt

+
(

∂h

∂u1

∂u1

∂u2
(0)

+ ∂h

∂u2

∂u2

∂u2
(0)

) ∣∣∣∣
t=b

.

5.1 Forward Sensitivity of the IVP

To evaluate the functional, all of the derivative terms ∂u1/∂p1, ∂u1/∂p2, etc., must
be found. We start by differentiating the original IVP given in Equations (45), (46)
wrt. all of the parameters and ICs. Assuming that the derivative operators d/dt and
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∂/∂p commute, the forward sensitivity equations (FSE) are given by

d

dt

[
∂u1

∂p1

]
= ∂ f1

∂u1

∂u1

∂p1
+ ∂ f1

∂u2

∂u2

∂p1
+ ∂ f1

∂p1

d

dt

[
∂u1

∂p2

]
= ∂ f1

∂u1

∂u1

∂p2
+ ∂ f1

∂u2

∂u2

∂p2
+ ∂ f1

∂p2

d

dt

[
∂u1

∂p3

]
= ∂ f1

∂u1

∂u1

∂p3
+ ∂ f1

∂u2

∂u2

∂p3
+ ∂ f1

∂p3

d

dt

[
∂u1

∂u1
(0)

]
= ∂ f1

∂u1

∂u1

∂u1
(0)

+ ∂ f1

∂u2

∂u2

∂u1
(0)

d

dt

[
∂u1

∂u2
(0)

]
= ∂ f1

∂u1

∂u1

∂u2
(0)

+ ∂ f1

∂u2

∂u2

∂u2
(0)

d

dt

[
∂u2

∂p1

]
= ∂ f2

∂u1

∂u1

∂p1
+ ∂ f2

∂u2

∂u2

∂p1
+ ∂ f2

∂p1

d

dt

[
∂u2

∂p2

]
= ∂ f2

∂u1

∂u1

∂p2
+ ∂ f2

∂u2

∂u2

∂p2
+ ∂ f2

∂p2

d

dt

[
∂u2

∂p3

]
= ∂ f2

∂u1

∂u1

∂p3
+ ∂ f2

∂u2

∂u2

∂p3
+ ∂ f2

∂p3

d

dt

[
∂u2

∂u1
(0)

]
= ∂ f2

∂u1

∂u1

∂u1
(0)

+ ∂ f2

∂u2

∂u2

∂u1
(0)

d

dt

[
∂u2

∂u2
(0)

]
= ∂ f2

∂u1

∂u1

∂u2
(0)

+ ∂ f2

∂u2

∂u2

∂u2
(0)

.

In full FSA, the parameter FSE’s entails a total of six separate numerical solu-
tions perturbing each of the parameters, while the set of IC’s FSE’s requires a total of
four additional numerical runs perturbing each of the ICs. A significant drawback
of FSA is the proliferation of equations that occurs in the SA. In this example,
we had to introduce ten additional equations, six for the parameters and four for
the IC’s. When working with large systems of IVPs, performing a FSA can be
computationally prohibitive. Suppose that the original system of IVPs consists of
j equations and, hence, j initial conditions. If there are k parameters, then the total
number of IVPs that must be solved is j( j + k + 1). For example, in constructing
an age structured epidemiological model, it would not be unreasonable to have 10
equations with 20 parameters. In this simple case, to do a full FSA we would need
to solve a total of 310 IVPs. A 31-fold increase in the number of equations needed
to do a sensitivity analysis is a significant computational burden.

Sometimes this computational burden can be reduced if you are only interested
in obtaining the numerical estimation of some of the FSEs. Suppose that you were
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interested in only ∂u2/∂p3, then you could note that only other IVP that is involved
with this equation is the equation for (d/dt)[∂u1/∂p3] and these two equations
together do not involve any of the other FSEs. Therefore, only these two FSE’s
along with the original forward problem need to be solved.

Before discussing the adjoint approach, we summarize the procedure for finding
the FSE of the general first order IVP

du
dt

= F[u(t ; p)], u(0) = u0, (48)

where u is an n × 1 forward solution vector and p is an (k + n) × 1 vector
which represents any of the k parameters or n initial conditions associated with
the problem.

Differentiating the forward problem wrt. p produces the FSE

d

dt

[
Dp[u]

] = Du[F] · Dp[u] + Dp[F], (49)

where Dp[u] is the n × (k + n) Jacobian of u, wrt. the parameters p and IC’s u(0),
Du[F] is the n × n Jacobian of F, wrt. the forward solution u, and Dp[F] is the
n×(k +n) Jacobian of F, with respect to the parameters p and IC’s u(0). To calculate
the derivatives which define Dp[u], both the forward problem-IVP and the FSEs
given in Equations (48) and (49) respectively must be solved simultaneously. The
IC’s for the FSE is determined by the choice of parameter of interest. Notice that in
solving the FSE, the derivatives are obtained, in which case the Jacobian Dp[u] is
found.

If the sensitivity of an associated function(al) J is needed, then we must calculate
the derivatives of J with respect to each component of the vector p;

dJ

dp
=

b∫

t=0

(
Dp

T [u]∇ug + ∇pg
)

dt + (Dp
T [u]∇uh + ∇ph

) ∣∣∣∣
t=b

. (50)

As was noted above, the term Dp
T [u] obtained from the FSE’s is now used to find

the desired derivative ∂ J/∂p. As has been done in previous examples, we introduce
an associated adjoint problem to circumvent calculating Dp

T [u]. Specifically, by
cleverly choosing the adjoint problem and adjoint boundary conditions, eventually
we will eliminate/replace the expressions Dp

T [u]∇ug and Dp
T [u]∇uh|t=b.

5.2 Adjoint Sensitivity Analysis of the IVP

As was noted in previous examples, the next step in our analysis is to construct the
associated adjoint sensitivity equations (ASE). The key was to cleverly formulate
the ASE so as to eliminate the direct evaluation of Dp[u].
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As in previous cases, the adjoint can be constructed only if an appropriate
inner product space exists for the forward problem. In this case, the natural inner
product is

b∫

t=0

vT

(
d

dt

[
Dp[u]

]− Du[F] · Dp[u] − Dp[F]

)
dt = 0, (51)

where v is the associated adjoint variable. Expanding the vT term and using
integration by parts on the first integrand gives

vT Dp[u]

∣∣∣∣
b

t=0

+
b∫

t=0

(
−dvT

dt
− vT Du[F]

)
Dp[u] dt −

b∫

t=0

vT Dp[F] dt = 0. (52)

If we compare the terms in the first integrand of this equation with the first
expression in the integrand of Equation (50) notice that two expressions are similar
in form. This can be seen by using the transpose operation, namely

(Dp
T [u]∇ug)T = (∇ug)T Dp[u], (53)

in which case we force the adjoint condition

−dvT

dt
− vT Du[F] = (∇ug)T (54)

Substituting and rearranging gives

b∫

t=0

(∇ug)T Dp[u] dt =
b∫

t=0

vT Dp[F] dt − vT Dp[u]

∣∣∣∣
t=b

. (55)

Take the transpose and substitute into the right hand side of d J/dp

dJ

dp
=

b∫

t=0

(Dp
T [F]v + ∇pg) dt − Dp

T [u]

∣∣∣∣
b

t=0

+ (Dp
T [u]∇uh + ∇ph)

∣∣∣∣
t=b

. (56)

Notice that in this formulation, the definite integral does not contain the expres-
sion Dp

T [u], only the boundary conditions contain this expression. Since Dp
T [u]|t=0

is easily calculated while the expression Dp
T [u]|t=b can only be calculated by

integrating the FSE’s for t ∈ [0, b], we can eliminate the upper BC by forcing

v(b) := ∇uh

∣∣∣∣
t=b

, (57)
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which reduces the expression for the derivative of J to be

dJ

dp
=

b∫

t=0

(Dp
T [F]v + ∇pg) dt + Dp

T [u]v

∣∣∣∣
t=0

+ ∇ph

∣∣∣∣
t=b

. (58)

Once again, by creating an associated adjoint problem, with appropriately chosen
BC’s, we are able to circumvent the problem of having to calculate Dp[u].

6 Principal Component Analysis of the IVP

6.1 Multiparameter Variation

In the previous section we constructed the FSEs for the IVP and obtained local
time dependent sensitivities for fixed parameter values. It was quite evident that as
the number of IVPs and parameters increase, the calculation of the FSEs becomes
burdensome. In this situation, the adjoint methodology becomes a more practical
alternative. With these limitations in mind, we now consider the case where the FSEs
are not too cumbersome to solve. With this caveat, suppose that the parameter vector
p = (p1 p2 . . . pK )T has an uncertainty, that is, the parameters are not specified as
precise values, but rather are given as some distribution, with expected value vector
E[p] = μp. The distinction between this analysis and previous results is that here
we wish to quantify the effects of uncertainty for multiparameter variations. In other
words, we wish to estimate the variation of the output, due to the effective strength
of coupling between parameters.

For “small” perturbations δp := p − μp to the parameter vector, the variation of
the output, to first order terms, is given by

δu := u(t ; μp + δp) − u(t ; μp) ≈ Dp[u]δp,

where as above, Dp[u] denotes the Jacobian of u, wrt. the parameters p. Now take
the outer product δu ⊗ δu = δu · δuT , to obtain an approximation of the variation
matrix of the output

δu · δuT ≈ Dp[u] δp · δpT Dp[u]T . (59)

Without giving all the details (see pp.120–126 [5], especially equation III.F.16 page
124), it can be shown that the temporal output covariance matrix, denoted as Cu,
can be written as

Cu = Dp[u] E
[
δp · δpT

]
Dp[u]T . (60)
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This time dependent matrix provides an approximation to the evolution of how the
coupling in the parameter variation affects the output.

Since covariance matrices are symmetric, we are guaranteed (see [15]) to have a
decomposition of Cu given by

Cu = Q Λ∼ QT =
K∑

i=1

λi qi (t) · qi
T (t), (61)

where Q is an orthonormal matrix whose columns consist of the eigenvectors qi (t),
for i = 1, . . . , K , of Cu, and Λ∼ is a diagonal matrix whose entries are the associated
eigenvalues, λi , written in decreasing order. Using this result we can examine the
effect of multiparameter variation in the principal component space. To accomplish
this, consider the transformation from solution space to principal component space
given by

v := QT
(
u(t ; μp + δp) − u(t ; μp)

) ≈ QT Dp[u]δp.

Taking the outer product v ⊗ v allows us to define the covariance matrix CPCS in
pricipal component space as

CPCS = QT Dp[u] E
[
δp · δpT

]
Dp[u]T Q

= QT CuQ

= QT QΛ∼QT Q

= Λ∼.

Notice that the covariance matrix CPCS is a diagonal matrix, which means that the
transformed vectors in principal component space are independent. Furthermore,
since the diagonal contains the eigenvalues, in decreasing order, the transformed
vectors are projected along the principal component axes formed by the eigenvectors
and in decreasing variance. This means that the greatest variation of v occurs along
the first eigenvector q1(t) with variance λ1, the second largest variation occurs along
q2(t) with variance λ2, etc.

7 Algorithmic Differentiation

When the problem of interest is to “find the derivative,” we must be careful to
distinguish which of the following two objectives we trying to accomplish:

1. explicitly finding a symbolic expression for the derivative, or
2. numerically estimating the derivative by a discrete approximation, such as finite

difference or a finite element method.
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The main focus of previous sections was to explicitly find the ubiquitous derivative
in various settings. We discussed how to find the derivative of an output variable
wrt. a particular parameter, or input variable. In this section, we provide a cur-
sory introduction to the methodology of algorithmic differentiation (AD), that is,
how a computer differentiates a algorithm. Since the researcher in epidemiology
will eventually want to numerically calculate derivatives, without having to write
computer code to accomplish this, standard packages such as ADIFOR, ADOL-C,
ADOL-F, DAFOR, TAMC, etc., should be used [25]. This section provides the basic
background needed in order to understand how AD works.

7.1 Sensitivity of the Reproductive Number R0

We introduce the AD methodology in a familiar epidemiological setting by consid-
ering the SEIR model

d S

dt
= bN − μS − βS

I

N

d E

dt
= βS

I

N
− (μ + k) E

d I

dt
= k E − (r + μ) I

d R

dt
= r I − μR,

where S, E , I , and R denote the susceptible, exposed, infectious, and recovered
populations respectively, and N = S + E + I + R is the total population. The
parameter β quantifies the efficacy of the infection in the susceptible population,
k is the per capita rate at which the exposed population becomes infectious, μ is
the per capita death rate, r is the per capita recovery rate, and b is the intrinsic
birth/migration rate.

A commonly used measure of the intensity of the infection is the basic repro-
ductive number R0 of the average number of susceptible individuals who have been
infected by a particular infectious individual, over the lifetime of that infected indi-
vidual. If R0 < 1, then on average, each infectious individual infects less than one
other individual, in which case we expect the infection to eventually subside. If
R0 > 1, then the infection is expected to spread throughout the susceptible pop-
ulation. This threshold condition provides a mathematical criteria for determining
whether the infection will spread or subside. Additionally, since R0 depends on the
parameters of the model, SA provides a way to measure which parameters have the
most effect on the spread or decrease in the infection.
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A particular problem in obtaining R0 is that there are numerous ways, which have
specific strengths/weaknesses, of deriving R0. Three of the most used approaches to
derive R0 are:

� Survival function method: This method is appropriate when explicit expres-
sions are available for the survival probability, (probability that a newly infected
individual remains infectious for time t) and the infectivity as a function of time.

� Next generation method: This method is appropriate when the population can
naturally be divided into discrete and disjoint classes, such as age, social status
(e.g., prostitute, day care worker, drug addict, etc..), demographic region, etc.

� Surrogate methods: The key concepts are the stability of the disease free equi-
librium point, locating a transcritical bifurcation of the endemic equilibrium,
etc.

The R0 for the above SEIR model is given by

R0 := kβ

(r + μ) (k + μ)
. (62)

Because the parameter values depend on the particular strain of infection, R0

will also depend on the specific infection. For example, consider the potentially life
threatening flu, which we broadly categorize in two forms: (1) seasonal flu, with
R0 ≈ 1.5, and (2) pandemic flu2 with R0 ∈ [2, 3]. For illustrative purposes only,
the seasonal flu will be modeled using the parameter values, in dimensional units
of days−1, of β = 0.375, k = 0.5, μ = 3.7 × 10−5), and r = 0.25, in which
case R0 ≈ 1.499. Since the reproductive number is greater than 1, the infection is
expected to spread. SA may now be used to determine how sensitive the spread is
to each of the defining parameters.

For example suppose, through some intervention strategy, we are able to slightly
alter the value of the parameter r , then the SI

SIr = −
(

r

r + μ

)
= −0.999852 < 0,

tells us that if we increase r by approximately 1%, then R0 decreases by approxi-
mately 1%, and vice versa. This is easily verified by increasing r : 0.25 → 0.2525,
which decreases R0 : 1.49967 → 1.48482 and results in a −0.989954% decrease
in R0, as estimated from the normalized SI.

A significant advantage of having this type of local analysis available is that now
the powerful tool of cost-benefit analysis is available. If the sensitivity of hypothet-
ical intervention strategy A is SI1 = 0.75 with associated cost of $1 × 104, while

2 Recall the devastating 1918–1919 influenza pandemic: “An estimated one third of the world’s
population (or ≈ 500 million persons) were infected and had clinically apparent illnesses during
the 1918–1919 influenza pandemic. The disease was exceptionally severe. Case-fatality rates were
> 2.5%, compared to < 0.1% in other influenza pandemics. Total deaths were estimated at ≈ 50
million and were arguably as high as 100 million.” [14]
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the sensitivity of intervention strategy B is SI2 = −0.25 with associated cost of
$4 × 103, then the cost-benefit ratios are

C B1 = $1 × 104

|0.75| = $13.3 × 103

unit
, and C B2 = $4 × 103

| − 0.25| = $16 × 104

unit
.

All other things being equal, since the first cost-benefit ratio is the smaller, this
suggests that intervention strategy A should be implemented. It should be noted that
the signs of the SIs and input and output variables be examined carefully, as was
noted in the beginning section discussing the definition of the SI.

7.2 Forward Sensitivity/Mode

We now describe the main idea behind AD, in the forward mode, without discussing
any of the coding quality, rounding, memory allocation, computational overhead,
etc., topics that are inherent to the actual implementation and execution of AD [25].
The basic idea in AD is quite simple, however the actual implementation is rather
sophisticated. Essentially, AD is an automatic implementation of the standard chain
rule from calculus. For example, consider the formal differential operations

d
[ u

v2

]
= v2 du − u d

[
v2
]

(v2)2

= v2 du − u (2v dv)

v4
.

The basic algebraic and differential operations performed were applications of the

� derivative of a quotient,
� derivative of a function to a power, and
� algebraic simplification rule of a base to an exponent, to another exponent.

In the jargon of AD, the standard rules of calculus would be written as the “tan-
gent operations,” using the elemental differentials in Fig. 6, and pseudo code for

Fig. 6 Templates used in AD
for the standard rules of
calculus, where the symbols�, �, and ♥ denote
“elemental functions”, and
the symbols d� and d♥
denote the “elemental
differentials”



224 L. Arriola and J.M. Hyman

calculating the SI of R0 wrt. r , is first defined without any attempt at efficient
coding.

The first step is the initialization of the parameters.

p 1 = 0.375; // p1 = β

p 2 = 0.5; // p2 = k

p 3 = 3.7 ∗ (10ˆ(−5)); // p3 = μ

p 4 = 0.25; // p4 = r

Our intention is to calculate the normalized SI wrt. the parameter r , while the
other parameters β, k, and μ are constant. Therefore, we initialize the derivatives as

dp 1 = 0.0; // ∂β/∂r = 0

dp 2 = 0.0; // ∂k/∂r = 0

dp 3 = 0.0; // ∂μ/∂r = 0

dp 4 = 1.0; // ∂r/∂r = 1

In the jargon of AD, p1, . . . , p4, dp1, . . . , dp4 are referred to as the input
variables.

Next, we perform the forward evaluation of the intermediate variables u1 = kβ,
u2 = r + μ, u3 = k + μ, and u4 = (r + μ)(k + μ), along with the associated
derivatives.

u 1 = p 2 ∗ p 1 = 0.1875; // u1 = kβ

du 1 = p 2 ∗ dp 1 + dp 2 ∗ p 1 = 0.0; //
∂u1

∂r
= k

∂β

∂r
+ ∂k

∂r
β = 0

u 2 = p 4 + p 3 = 0.250038; // u2 = r + μ = 0.250038

du 2 = dp 4 + dp 3 = 1.0; //
∂u2

∂r
= ∂r

∂r
+ ∂μ

∂r
= 1.0

u 3 = p 2 + p 3 = 0.500038; // u3 = k + μ = 0.500038

du 3 = dp 2 + dp 3 = 0.0; //
∂u3

∂r
= ∂k

∂r
+ ∂μ

∂r
= 0.0.

u 4 = u 2 ∗ u 3 = 0.125028; //
u4 = (r + μ)(k + μ)

= 0.125028

du 4 = u 2 ∗ du 3 + du 2 ∗ u 3 = 0.500038; //

∂u4

∂r
= ∂

∂r
[(r + μ)(k + μ)]

= 0.500038
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Now form the reproductive number

R0 = u5 = u1

u4
= u1

u2u3
=

u1︷︸︸︷
kβ

(r + μ)︸ ︷︷ ︸
u2

(k + μ)︸ ︷︷ ︸
u3

(63)

and the derivative ∂ R0/∂r .

u 5 = u 1/u 4 = 1.49967; //
u5 = kβ

(r + μ) (k + μ)
= 1.49967

du 5 = (u 4 ∗ du 1 − u 1 ∗ du 4)/

(u 4)2 = −5.99778; //

∂u5

∂r
= ∂

∂r

[
kβ

(r + μ) (k + μ)

]

= −5.99778

Finally, the SI is calculated, as the output variable u6

u 6 = (p 4/u 5) ∗ du 5 = −0.999852?; //
u6 = r

R0

∂ R0

∂r
= −0.999852

as was found by direct calculation.
The above pseudo code for calculating, in the forward mode, the SI (r/R0)∂ R0/∂r

provides a glimpse into how AD is done. The execution of AD is that as one inter-
mediate calculation is completed, that result, along with other intermediate results,
become inputs for subsequent calculations. Furthermore, each forward evaluation
is also differentiated as well. Evaluation of these functions can be thought of as
the progression through a directed tree3, with vertices p1, . . . , p4, u1, . . . , u6, and
SIR0 as shown in Fig. 7. The input/independent variables, denoted as p1, . . . , p4 are
referred to as the roots of the graph, and the leaves of the graph are the dependent
variables u1, . . . , u6, and SIR0 . The standard convention is to place the roots to the
left, and the leaves to the right in the graph.

As another unrelated however instructive example, consider the sequence of
computations

u1 := f1[p1, p3]; u2 := f2[p2, u1]; u3 := f3[p1, p2, p4, u2];

u4 := f4[p2, u2, u3]; u := u4;

3 We are assuming that this particular algorithm does not have any loops, in which case the graph
has no cycles, which means the graph will be a tree. In the more general case, this restriction is not
necessary as sophisticated AD packages can handle these complications.
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p1

dp1

p2

dp2

p3

dp3

dp4

p4

u1

du1

u2

du2

u3

du3 u4

du4

u5

du5

u6 SIR0

Fig. 7 Directed computational graph for R0. Solid arrows denote forward evaluations and dashed
arrows denote forward derivative evaluations. The parameters p1, . . . , p4 and the derivative param-
eters dp1, . . . , dp4 are first initialized. Next the intermediate forward variables u1, . . . , u6 and the
intermediate forward derivative variables du1, . . . , du6 are calculated. The final step is the output
variable SIR0

where p1, . . . , p4 are the input variables, u1, . . . , u4, are the intermediate out-
puts/variables, and u: final output/variable, with the associated computational graph
as shown in Fig. 8

Suppose that we wish to calculate du/dp3. In the forward mode, we start at
the specified parameter p3 and successively take derivatives of every intermediate
variable by following the directed edges. Since there are two distinct directed paths
from p3 to u, namely p3 → u1 → u2 → u4 → u and p3 → u1 → u2 →
u3 → u4 → u, we expect that the final expression for du/dp3 has two terms

Fig. 8 Directed graph of an
algorithm with input
parameters p1, . . . , p4,
intermediate
outputs/variables u1, . . . , u4,
and final output/variable u

p2

p4

p3

p1

u3u1

u2

u4

u
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reflecting this observation. If we had wanted to obtain du/dp4, the progression
would be p4 → u3 → u4 → u and the associated derivative would contain only one
expression.

Assuming that the input parameters are independent of each other, then to find
du/dp3 the following forward calculations, taken in order, are performed:

du1

dp3
= ∂u1

∂p3

du2

dp3
= ∂u2

∂u1

du1

dp3

du3

dp3
= ∂u3

∂u2

du2

dp3

du4

dp3
= ∂u4

∂u2

du2

dp3
+ ∂u4

∂u3

du3

dp3

du

dp3
= ∂u

∂u4

du4

dp3
, where

∂u

∂u4
= 1

The actual progression needed to calculate the final output derivative is in the
forward direction and the explicit output derivative is given by

du

dp3
= ∂u

∂u4

∂u4

∂u2

∂u2

∂u1

∂u1

∂p3︸ ︷︷ ︸
p3→u1→u2→u4→u

+ ∂u

∂u4

∂u4

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂p3︸ ︷︷ ︸
p3→u1→u2→u3→u4→u

. (64)

Using these examples as a template, suppose that we have K input parameters
p ∈ {p1, . . . , pK } and N intermediate variables u1, . . . , uN , defined as the dif-
ferentiable functions u1 := f1 [p1, . . . , pK ], ui := fi

[
p1, . . . , pK , u1, . . . ui−1

]
,

for i = 2, . . . N , and the output variable only depends on uN , i.e., u = uN . The
derivatives dui/dp are given by

du1

dp
= ∂u1

∂p
(65)

dui

dp
=

i−1∑
j=1

∂ui

∂u j

du j

dp
+ ∂ui

∂p
(66)

du

dp
= duN

dp
(67)

for i = 2, . . . , N .
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7.3 Adjoint/Reverse Mode

In the forward mode, a particular parameter/input variable of interest was first cho-
sen, then moving forward on the directed tree, derivatives of successive intermediate
variables were taken. In the adjoint or reverse mode,4 a final output variable is cho-
sen and this output is differentiated wrt. each of the intermediate variables. The
actual order of calculation however is reversed.

For the specific example given in Fig. 8 the differentiation proceeds as fol-
lows. The output variable u is directly affected by the intermediate variable u4, in
which case

du

du4
= ∂u4

∂u4
= 1.

Now u is affected by u3 indirectly through u4, in which case the chain rule gives

∂u

∂u3
= ∂u

∂u4

∂u4

∂u3
= ∂u4

∂u3
.

Similarly, since u2 affects u indirectly through u3 and u4, then

∂u

∂u2
= ∂u

∂u3

∂u3

∂u2
+ ∂u

∂u4

∂u4

∂u2
.

Lastly, u1 affects u through u2 and p3 affects u through u1, then

∂u

∂u1
= ∂u

∂u2

∂u2

∂u1
and

du

dp
= ∂u

∂u1

∂u1

∂p3
.

Notice that the order of evaluation is reversed, namely, the path now taken is
∂u/∂u3 → · · · , and the result du/dp3, which is obtained by the composition of
the derivatives, is the same as the result given in Equation (64).

For the reproduction number example given in Fig. 7, we will only calculate
∂ R0/∂r = ∂u5/∂p4. To follow standard conventions in AD, define the output
variable u := u5, in which case we wish to calculate ∂u/∂p4.

Examining Fig. 7, ignoring the paths containing du vertices, there is only one
path from p4 to u5, namely p4 → u2 → u4 → u5, and since p4 does not affect u1,
pseudo code for the reverse/adjoint mode is given by

4 The reader is cautioned about the usage of the terminology “backward mode.” The stan-
dard methods in numerical analysis of the BDF (Backward Differentiation Formulas), which
are used in the numerical solution of stiff IVP’s, are not what is being discussed in the
adjoint/reverse mode of AD. Hence to avoid any confusion, we will refer to the differentia-
tion of the output variable, wrt. each of the intermediate variables as the adjoint or reverse
mode.
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du\du 5 = 1.0; //
∂u

∂u5
= ∂u5

∂u5

du\du 4 = du\du 5 ∗ du 5\du 4 = −11.9947; //
∂u

∂u4
= ∂u

∂u5

∂u5

∂u4

du\du 3 = du\du 4 ∗ du 4\du 3 = −2.9991; //
∂u

∂u3
= ∂u

∂u4

∂u4

∂u3

du\du 2 = du\du 4 ∗ du 4\du 2 = −5.9998; //
∂u

∂u2
= ∂u

∂u4

∂u4

∂u2

du\du 1 = du\du 5 ∗ du 5\du 1 = 7.9982; //
∂u

∂u1
= ∂u

∂u5

∂u5

∂u1

du\dr = du\du 2 ∗ du 2\dr = −5.9979; //
∂u

∂p4
= ∂u

∂u2

∂u2

∂p4

in which case SIR0 = (r/R0)∂ R0/∂r = (0.25/1.49967)(−5.9979) = −0.99987 as
agrees with the previous results.

For the general problem, in the actual order they are evaluated, the ASE are
given by

∂u

∂uN
= ∂uN

∂uN
= 1

∂u

∂uN−1
= ∂u

∂uN

∂uN

∂uN−1

∂u

∂uN−2
= ∂u

∂uN−1

∂uN−1

∂uN−2
+ ∂u

∂uN

∂uN

∂uN−2

∂u

∂uN−3
= ∂u

∂uN−2

∂uN−2

∂uN−3
+ ∂u

∂uN−1

∂uN−1

∂uN−3
+ ∂u

∂uN

∂uN

∂uN−3

...
∂u

∂u1
= ∂u

∂u2

∂u2

∂u1
+ ∂u

∂u3

∂u3

∂u1
+ · · · + ∂u

∂uN

∂uN

∂u1
(68)

and finally

du

dp
=

N∑
i=1

∂u

∂ui

∂ui

∂p
. (69)

The astute reader is probably wondering why the insistence on using the phrase
“adjoint mode,” rather than the more transparent “reverse mode,” since it is quite
clear that the derivative terms are being evaluated in reverse order, as compared to
the forward mode. To justify this terminology, reverse the order of the above ASE,
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given in (68). Without giving all the details, this system can be concisely written in
matrix form involving the transpose of the Jacobian5 D [u]

D [u] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
∂u2

∂u1
1 0 · · · 0

∂u3

∂u1

∂u3

∂u2
1 0 · · · 0

...
...

. . .
...

∂uN

∂u1

∂uN

∂u2
· · · ∂uN

∂uN−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (70)

To summarize, the essence of the calculations of the forward and the adjoint/
reverse modes is shown in the following diagram:

Forward Mode Adjoint/Reverse Mode
vs.

du1

dp
→ du2

dp
→ · · · → duN

dp
→ du

dp

∂u

∂uN
→ ∂u

∂uN−1
→ · · · → ∂u

∂u1
→ du

dp

For those readers who need more detail on the theory, implementation, software,
and generalizations see [25]. One cautionary note is in order: the input and out-
put variables must be independent variables; only the intermediate variables can be
dependent.

Input Variables Intermediate Variables Output Variables
u−K , . . . , u−2, u1 u1, u2, . . . , uM uM+1, uM+2, . . . , uM+L

Independent Dependent Independent

8 Optimization Problems

A major objective of epidemiology is to identify and quantify the relevant mecha-
nisms that determine how a disease propagates through a susceptible population.
This information can be used to develop intervention strategies that will effec-
tively and efficiently minimize the outbreak and the subsequent deleterious effects.
Inherent in the decision-making process is the fact that resources used to intervene,
such as money, vaccines, antibiotics, trained medical personnel, isolation, diagno-
sis using syndromic surveillance, etc., are limited. Determining what the optimal
strategy should be, and how to implement such a strategy, is not a trivial matter. In

5 For those readers who want more details on the theory and implementation of AD see [25].
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this section we discuss two commonly occurring optimization problems from the
decision-making sciences, namely the linear and quadratic programming problems.
Additionally, we introduce an optimization/control problem in the context of an
influenza pandemic.

8.1 Linear Programming Problem: BVD Disease

In the realm of veterinary epidemiology, bovine viral diarrhoea (BVD) [20] has, and
will continue to have, a significant economic impact on the farming industry. Since
this is such a competitive market, any losses caused by the disease must be balanced
with the associated costs of eradication, prevention and treatment strategies. For
example, replacement of the breeding stock will change the age structure of the
herd. This strategy affects the productivity of the herd and disease outbreak.

In light of these and many other practical aspects, it may be more realistic to
examine the economic options available to the farmer, which will have direct conse-
quences on the epidemiology of the spread of BVD, rather than modeling the disease
as an outbreak in isolation. In other words the economically motivated actions taken
by the farmer has significant implications for the epidemiology of the disease and
the bottom line. This viewpoint provides farm management with quantitative infor-
mation about the potential variability in income and hence a measure of potential
economic risk.

For this application, the constraints take on a wide range of aspects such as total
land area, silage area, silage consumption by cows and heifers, calving rates, sub-
sidies, labor rates, available capital, etc.. Decisions that affect the size and quality
of the herd, and the spread of disease include how many female or male calfs are
sold, how much graze land is used, number of replacement heifers, double fenc-
ing of pastures, vermin control, etc.. Since the primary motivation for any business
is profit, financial aspects are of primary concern to management. However, it is
well known that there is an associated risk in trying to maximize profit, as is easily
demonstrated by the stock market. A whole-farm business model [11] in this context
would quantify the cost of disease intervention strategies verses the variability of
income. Furthermore, a SA of the optimal solution, wrt. the constraints and lim-
ited resources, would give quantitative information about which aspects have the
most/least effect on the risk and a cost-benefit analysis.

A commonly used methodology in the decision-making sciences is to formulate
this problem as a linear programming problem (LPP) [31]. The essential compo-
nents of a LPP are (1) an objective function which is to be minimized (e.g. cost,
risk, etc.,) or maximized (e.g. profit, productivity, etc.,) and (2) constraints (limited
resources such as money, silage land, etc.).

Definition 1 (Standard/Forward/Primal LPP). Let u1, u2, . . . , un denote the indi-
vidual production levels of n commodities with associated unit profits c1, c2, . . . , cn.
Let ai j denote the unit amount of resource bi consumed in the production of
commodity j . The Standard/Forward/Primal LPP is defined as
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Maximize the profit function

J (u1, u2, . . . , un) := c1u1 + c2u2 + · · · + cnun = cT u,

subject to the linear inequality constraints

a11u1 + a12u2 + · · · + a1nun ≤ b1

a21u1 + a22u2 + · · · + a2nun ≤ b2

...

am1u1 + am2u2 + · · · + amnun ≤ bm

u1, u2, · · · , um ≥ 0,

or in matrix form, the constraints are written as Au ≤ b.

It is standard practice to assume that the parameters ai j , bi and c j are nonnegative.
When this is not the case, then usually a simple change of variables can map the
original parameters to a situation where it is true.

Sensitivity analysis allows the analyst a way to determine which of the parame-
ters ai j , bi , or c j , defining the problem, has the most effect on the profit function.
Since we are interested in how the profit function is affected by perturbations to
the defining parameters, we must explicitly find the derivative of the profit function,
wrt. changes in the defining parameters. Let p denote any of the parameters ai j , bi ,
or c j , in which case we wish to find

∂ J

∂p
= cT ∂u

∂p
+ ∂cT

∂p
u. (71)

Although rarely discussed, the associated adjoint or dual problem is crucial in
finding the sensitivity of the profit function. The main difficulty is in evaluating
the derivative expression cT ∂u/∂p term. To eliminate this problem, the associated
adjoint/dual problem will naturally occur, in which case a derivative does not need to
be explicitly calculated. Instead, we only need to obtain the solutions to the forward
and adjoint/dual problems. Since the simplex method produces both solutions simul-
taneously, no extra calculations are needed. For completeness, recall the associated
adjoint/dual LPP:

Definition 2 (Adjoint/Dual LPP). The Adjoint/Dual LPP is defined as

Minimize the cost function

J (v1, v2, . . . , vm) := b1v1 + b2v2 + · · · + bmvm = bT v,
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subject to the inequality constraints

a11v1 + a21v2 + · · · + am1vm ≥ c1

a12v1 + a22v2 + · · · + am2vm ≥ c2

...

a1nv1 + a2nv2 + · · · + amnvm ≥ cn

v1, v2, · · · , vm ≥ 0,

or in matrix form AT v ≥ c.

Sensitivity of the Parameter Space

Many of the commonly occurring optimization problems can be written in the form

Maximize/Minimize a given objective function

J (u) = F(u1, . . . , un)

subject to the K equality and L inequality constraints

fk(u) = 0 where k = 1, . . . , K

gl(u) ≤ 0 where l = 1, . . . , L .

To determine the sensitivity of the profit function to perturbations in the parameters,
we form a modified Lagrange function based on the Karush-Kuhn-Tucker (KKT)
theorem [17]. Recall from multivariable calculus that the technique of the method of
Lagrange multipliers was used to find the maximum/minimum of a given function,
subject to specified equality constraints. In the field of optimization, there exists an
analogous method when a mixture of equality and inequality constraints are present.

The procedure is based on a modified Lagrangian function, which is a result of
the KKT theorem. In applying this theorem, an adjoint problem naturally arises.
This modified Lagrangian function is constructed by forming a linear combination
of the objective functional and the constraints as

L (u; μ, λ) := F(u) +
K∑

k=1

μk fk(u) +
L∑

l=1

λl gl(u), (72)

where μk and λl are called the Lagrange multipliers. as we shall see, the Lagrange
multipliers are in fact adjoint variables.
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Theorem 1 (Karush/Kuhn/Tucker Theorem). An optimal solution is found by
solving the associated equations

∂ F(u∗)

∂u j
+

K∑
k=1

μk
∂ fk(u∗)

∂u j
+

L∑
l=1

λl
∂gl(u∗)

∂u j
= 0 for j = 1, . . . n

μk fk(u∗) = 0, for k = 1, . . . L

λl gl(u∗) = 0, for l = 1, . . . L

where u∗ is optimal in the sense that F(u∗) ≤ F(u), where u is any admissible
solution.

We begin by changing the linear inequality constraints in the forward problem
into equality constraints by introducing slack variables s1, s2, . . . , sm as follows:

a11u1 + a12u2 + · · · + a1nun + (s1)2 = b1

a21u1 + a22u2 + · · · + a2nun + (s2)2 = b2

...

am1u1 + am2u2 + · · · + amnun + (sm)2 = bm

u1, u2, · · · , um ≥ 0.

Notice that we have deviated from the usual procedure of introducing nonnegative
slack variables as (si )2 rather than just si .

To apply the KKT theorem, we next construct the associated Lagrange function

L := c1u1 + c2u2 + · · · cnun

+v1
(
b1 − a11u1 − a12u2 − · · · − a1nun − (s1)2)

+v2
(
b2 − a21u1 − a22u2 − · · · − a2nun − (s2)2

)
...

+vm
(
bm − am1u1 − am2u2 − · · · − amnun − (sm)2

)
,

where the vi are called the Lagrange multipliers. Using the usual inner product
notation, the Lagrange function can be written in the more concise form

L := cT u + vT

⎛
⎜⎜⎜⎝b − Au −

⎛
⎜⎜⎜⎝

(s1)2

(s2)2

...
(sm)2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .
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The optimal solution occurs at a critical point of the Lagrange function, that is,
when the system of equations

∂L
∂u j

= 0,
∂L
∂si

= 0, and
∂L
∂vi

= 0

are satisfied. These equations respectively reduce to the adjoint problem:

AT v = c, (73)

the orthogonality conditions:

vi si = 0, for i = 1, . . . m, (74)

and lastly to the forward problem:

Au +

⎛
⎜⎜⎜⎝

(s1)2

(s2)2

...
(sm)2

⎞
⎟⎟⎟⎠ = b. (75)

Taking the transpose of the adjoint problem given in Equation (73) and substituting
into the derivative of the profit function given in Equation (71) gives

∂ J

∂p
= vT A

∂u
∂p

+ ∂cT

∂p
u. (76)

To evaluate this expression, we must somehow evaluate the derivative ∂u/∂p. We
will circumvent this problem by relating this derivative with the adjoint solution v.
To obtain this relationship, differentiate the forward problem given in Equation (75)
wrt. the parameter p to get

A
∂u
∂p

+ ∂A
∂p

u + 2

⎛
⎜⎜⎜⎜⎝

s1
∂s1
∂p

s2
∂s2
∂p
...

sm
∂sm
∂p

⎞
⎟⎟⎟⎟⎠ = ∂b

∂p
.

Now premultiply by vT and use the orthogonality conditions given in Equation
(74) to obtain

vT A
∂u
∂p

= vT

(
∂b
∂p

− ∂A
∂p

u
)

,
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in which case
∂ J

∂p
= vT A

∂u
∂p

+ ∂cT

∂p
u

= vT

(
∂b
∂p

− ∂A
∂p

u
)

+ ∂cT

∂p
u.

The utility of this formula is that to calculate ∂ J/∂p, only static/fixed quantities
need to be known, specifically the solutions to the forward and adjoint problems,
namely u and v. Since the simplex method calculates both solutions simultane-
ously, there is no need to make perturbations to the simplex tableau, and reapply
the simplex method for each change.

For the cases where p = bi , p = ai j , or p = c j the respective derivatives
reduce to

∂ J

∂bi
= vi for i = 1, . . . , m,

∂ J

∂ai j
= −vi u j for i = 1, . . . , m, and j = 1, . . . , n, and

∂ J

∂c j
= u j for j = 1, . . . , n.

Notice that ∂ J/∂bi and ∂ J/∂c j ≥ 0, while ∂ J/∂ai j ≤ 0. This means that as the
limited resources bi , or unit profits c j are increased, the profit is increased, whereas
if the unit consumption quantities ai j are increased, the profit is decreased, as is
expected.

8.2 Quadratic Programming Problem: Wheat Selection

In 1952, Harry Markowitz [24] published a seminal paper titled “Portfolio Selec-
tion” which laid the foundation for what is now called modern portfolio the-
ory. Markowitz constructed the mathematical framework for the well known and
accepted observation that investors, although seeking a maximum return on their
investments, also simultaneously want to minimize the associated risk. What his
work espoused was that the proper mixture of various investments can significantly
reduce the overall volatility of the portfolio, while maintaining a “high” rate of
return. More precisely, Markowitz was able to quantitatively provide two solutions:
a maximum amount of return for a given level of risk, or a minimum level of risk
for a given amount of return.

Since cereal grains, such as wheat, provide a substantial portion of the caloric
needs of humans worldwide, issues such as disease management and prevention are
of the utmost importance. In the United States, Kansas is the leading wheat grower
in the nation, and is acutely aware of the effects of soil type, average rainfall, disease
tolerance, etc., on the yield, and hence the bottom line. To further complicate the
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problem, agricultural researchers are attempting to produce perennial grain crops
that will displace the annual crops that are currently planted. The commonly used
practices, that reduce disease inoculum in annual crops, such as tillage, delayed
planting, or crop rotation, are not applicable to perennial crops. In this situation,
farmers would need to plant blends of seeds from a mixture of cultivars (varieties).
This strategy of using mixtures of cultivars has been shown to be effective in the
management/prevention of disease.

In the jargon of modern portfolio theory, investment in securities, stocks or bonds
is replaced with the planting of multiple wheat cultivars. The objective of maximiz-
ing the expected rate of return on the investments is replaced with maximizing the
wheat yield. Finally, minimize the financial risks is replaced by minimizing the vari-
ation in wheat yield due to “genotype-environment interaction,” that is, how each
cultivar responds to the inevitable unpredictable environmental conditions. Once
quantitative values can be established for the average yield, and the variance and
covariance of yields of each cultivar, an optimal portfolio is found by solving a
Quadratic Programming Problem (QPP) 6.

In the case of modern portfolio theory, risk is defined in terms of the standard
deviation/variance of the return on the assets, and is in fact a quadratic functional.
Since the risk in the wheat portfolio is also a function of the variance, this problem
will also be a QPP. Lastly, a SA of the optimal solution(s) provides quantitative
information on which aspects have the most effect on the optimal solution(s).

Definition 3 (Quadratic Programming Problem QPP). The Quadratic
Programming Problem (QPP) is defined as

Maximize the profit function

J (u1, u2, . . . , un) := cT u − 1

2
uT Q u,

subject to the linear inequality constraints

a11u1 + a12u2 + · · · + a1nun ≤ b1

a21u1 + a22u2 + · · · + a2nun ≤ b2

...

am1u1 + am2u2 + · · · + amnun ≤ bm

u1, u2, · · · , um ≥ 0,

or in matrix form, the constraints are written as Au ≤ b.

6 For the general LPP discussed earlier, it is assumed that the profit function is strictly linear in
terms of the production level of the associated products. Intuitively this assumption cannot hold true
for arbitrary levels of production. One would expect that if the level of production was sufficiently
high, the profit would decrease. A common way of incorporating this behavior into the model is to
subtract a quadratic term from the objective function. In essence, the quadratic expression can be
thought of as a penalty function for excessive production [3, 4].
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The matrix Q is assumed to be a symmetric, positive semi-definite matrix; it is some-
times referred to as the Hessian matrix. The expression (1/2)uT Q u is a quadratic
form and represents the penalty of excess production.

8.2.1 Sensitivity of the Parameter Space

As was done in the LPP, the inequality constraints are transformed into equality
constraints by the introduction of slack variables, as given in Equation (75). To
apply the Karush-Kuhn-Tucker theorem, construct the extended Lagrange function

L := cT u − 1

2
uT Q u + vT

⎛
⎜⎜⎜⎝b − Au −

⎛
⎜⎜⎜⎝

(s1)2

(s2)2

...
(sm)2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .

Once again, the optimal solution occurs at a critical point of the Lagrange function,
that is, when the system of equations

∂L
∂u j

= 0,
∂L
∂si

= 0, and
∂L
∂vi

= 0

are satisfied. These equations respectively reduce to the nonhomogeneous adjoint
problem:

AT v = c − Qu, (77)

the orthogonality conditions given in Equation (74), and lastly to the forward prob-
lem given in Equation (75). Notice that if the matrix Q is the zero matrix, then the
nonhomogeneous adjoint problem for the QPP reduces to the homogeneous adjoint
problem for the LPP, as is to be expected.

Let p denote any of the parameters ai j , bi , c j , or qi j , where qi j denotes the i, j
entry of the matrix Q. Next, differentiate the cost function, wrt. parameter p:

∂ J

∂p
= ∂cT

∂p
u − 1

2
uT ∂Q

∂p
u + 1

2

(
2cT ∂u

∂p
− uT Q

∂u
∂p

− ∂uT

∂p
Qu
)

. (78)

Since the matrix Q is symmetric, then

(
Q

∂u
∂p

)T

= ∂uT

∂p
Q,

in which case Equation (78) reduces to

∂ J

∂p
= ∂cT

∂p
u − 1

2
uT ∂Q

∂p
u + (cT − uT Q

) ∂u
∂p

.
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The last expression in this equation contains the derivative term ∂u/∂p and will
be replaced by an expression containing the forward and adjoint solutions. This
expression is found by differentiating the forward problem given in Equation (75).

Next, premultiply this result by the modified adjoint solution vT , and lastly use
the orthogonality conditions given in Equation (74). Specifically,

vT A
∂u
∂p

= (cT − uT Q
) ∂u

∂p

= vT

(
∂b
∂p

− ∂A
∂p

u
)

,

in which case
∂ J

∂p
= vT

(
∂b
∂p

− ∂A
∂p

u
)

+ ∂cT

∂p
u − 1

2
uT ∂Q

∂p
u

︸ ︷︷ ︸
Additional Term

. (79)

Notice that only the solutions to the forward and adjoint problems are needed to find
the derivative of the objective function.

Comparing this result with the LPP, if the matrix Q is the zero matrix then
the QPP reduces to the LPP as expected. For the parameters ai j , bi , and c j , the
derivatives ∂ J/∂ai j , ∂ J/∂bi , and ∂ J/∂c j are the same form as given for the LPP.
However, it should be noted that the adjoint solution v of Equation (77) is not the
same as in the LPP.

8.3 Adjoint Operator, Problem, and Sensitivity

This section provides the generalization for constructing the adjoint problem in its
most powerful form. The crucial requirements to take note of are:

� there must be a natural way to define an inner product on the FSE
� the associated adjoint problem must provide a way to allow a natural evaluation

of the derivative ∂u/∂p, or some functional J (u).

The following sketch [19, 20] provides an overview of how the generalized
adjoint problem is constructed. The types of problems which are amenable to the
adjoint methodology are those that can be expressed in the form

F(u) = f,

where F is a linear/nonlinear operator F : X → Y , and f is the forward forcing
function. The domain and range X and Y are assumed to have sufficiently nice
topological properties. For example, both X and Y could be Hilbert or Sobolov
spaces. Also, associated with the forward problem is the task of determining the
sensitivity of some desired response function(al) J (u).
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The adjoint problem arises naturally by the introduction of an adjoint variable
v ∈ X , through the calculation of the Gâteaux derivative:

F ′(u)v := lim
ε→0

F(u + εv) − F(u)

ε
.

This definition can be thought of as a directional derivative of the operator F at
the point u, and in the direction of the adjoint variable v. The somewhat awkward
notation F ′(u)v is intended to suggest that the operator F takes the forward variable
u, and maps it to an operator F ′, which now depends on both u and the adjoint
variable v.

The next piece of necessary machinery is to formulate an extended representation
of the operator F . This is accomplished by assuming that F is sufficiently Gâteaux
differentiable. Application of the intermediate-value theorem of operators, about the
point u0, permits us to rewrite the forward operator F in extended form:

Φ(u)u = F(u),

where the operator Φ is defined in integral form

Φ(u)v := F(u0) +
∫ 1

τ=0
F ′(u0 + τ (u − u0)) dτ (v − u0),

Given that an appropriate inner product has been defined, consider the adjoint
operation

〈Φ(u)v,w〉 = SC1 + 〈v,Φ†(u)w〉,

where SC1 denotes the 1st solvability condition, and Φ† denotes the adjoint operator
associated with the forward operator Φ. When SC1 = 0, the result is referred to as
the Lagrange identity. The associated generalized adjoint problem is defined as

Φ†(u)v = g,

where the adjoint forcing function g has not yet been specified. As was illustrated
in the linear system problem, not specifying g at this time is advantageous, since it
may be cleverly related to the response functional J .

A second solvability condition SC2 occurs when the forward and adjoint prob-
lems are related. Assuming that the Lagrange identity is satisfied, i.e. SC1 = 0, then
taking the dot product of the forward problem with the adjoint solution gives

〈Φ(u)u, v〉 = 〈 f, v〉,
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while taking the dot product of the adjoint problem with the forward solution gives

〈Φ†(u)v, u〉 = 〈g, u〉
〈v,Φ(u)u〉 = 〈g, u〉

〈v, f 〉 = 〈g, u〉.

This invariance condition, or second solvability condition SC2, relates the forward
and adjoint solutions and forcing functions by

〈g, u〉 = 〈 f, v〉.

Finally, the adjoint forcing function g is cleverly chosen so that

〈g, u〉 = J (u).

We summarize the construction of the adjoint problem in the following diagram
(see Fig. 9 below):

For the linear system, the adjoint methodology produces the result that the adjoint
problem is AT v = c, provided the operator equation F(u) = f is constructed from
the forward sensitivity equation. Specifically, the results follow when

F(u) := A
∂u
∂q

+ ∂A
∂q

u, f := ∂b
∂q

,

and J (u) :=
〈
∂u
∂q

, c
〉
.

Fig. 9 Construction of the
Adjoint Problem
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9 Examples

In this section we highlight a warning: “Let the buyer beware!” The warnings are
a discussion of some of the pitfalls/shortcomings that can occur in FSA and ASA.
Here we list situations where the reader should proceed with caution:

� In order for an adjoint problem to be defined, an associated inner product
structure must exist. No inner product =⇒ No adjoint.

� To determine the sensitivity of the associated functional J = J (u), using the
adjoint methodology, the functional must be cleverly written in terms of the inner
product.

� Once an adjoint problem has been defined, if more than one sensitivity is
required, (e.g., recall the case of the sensitivity of the eigenvalues and eigen-
vectors), additional information must be introduced to make further progress.

� SA as discussed here is local in nature. The estimates of derivatives are valid only
in some “small” neighborhood of the specified nominal values of the parame-
ters. For a more global approach, uncertainty quantification methodology should
be used.

In the following examples we provide some insight into how one might attain
explicit formula for derivatives of aspects of solutions, which cannot be defined in
terms of an inner product. The basic tool is not exotic, rather ubiquitous: the chain
rule. As another disclaimer, the following examples are provided in the hopes that
they might be useful in your program of SA, and stimulate ideas that would allow
you to build additional tools of SA in your own specific realm of research.

9.1 Sensitivity of the Doubling Time

Suppose we have an IVP and we are interested in the time it takes for the solution
u = u(t) to double its initial value, i.e., u(tD) = 2u0. For example, we might wish to
know the doubling time for the number of people infected in an epidemic and how it
it affected by changes to specific parameters. The typical difficulty is that, in general,
we do not have the explicit forward solution, in which case explicit expressions
for the desired derivatives are not available. However, numerical values for these
derivatives can be calculated using the numerical solution of the forward sensitivity
equation(s). The derivatives of interest are found by application of the following
lemma.

Lemma 1 (Sensitivity of time to attain a multiple of the initial condition). Let
u = u(t ; p, u0) be the solution to the first order IVP

du

dt
= f (u, t ; p) with u(0) = u0, (80)
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where f is differentiable in u, t , and p. Let tk denote the time t for which u attains
the value u(tk) = ku0, where k > 0. The derivative dtk/dp is given by

dtk
dp

= −

∂u

∂p

∣∣∣∣
t=tk

f (ku0, tk ; p)
, (81)

and dtk/du0 is given by

dtk
du0

= −
k − ∂u

∂u0

∣∣∣∣
t=tk

f (ku0, tk ; p)
= 0. (82)

Proof. When t = tk the solution u satisfies the condition u(tk) = ku0 and upon
differentiation wrt. the parameter p, we obtain

d

dp
[u(t ; p, u0)]

∣∣∣∣
t=tk

= d

dp
[ku0] .

Assuming that k and u0 are independent of the parameter p, this equation reduces to

du

dt

∣∣∣∣
t=tk

dtk
dp

+ ∂u

∂p

∣∣∣∣
t=tk

= 0,

and upon solving for ∂tk/∂p, we obtain the result given in Equation (81). Similarly,
differentiate uk = ku0 wrt. u0 to get

d

du0
[u(t ; p, u0)]

∣∣∣∣
t=tk

= d

du0
[ku0] .

Assuming that k and p are independent of u0, this equation reduces to

du

dt

∣∣∣∣
t=tk

dtk
du0

+ ∂u

∂u0

∣∣∣∣
t=tk

= k.

But when t = tk then u(tk) = ku0, which means ∂u/∂u0|t=tk = k, in which case
dtk/du0 = 0.

9.2 Sensitivity of a Critical Point

An important application of SA is to determine which parameter(s), of an IVP mod-
eling the spread of an epidemic, has the most effect on the peak of the infection. In
other words, we want to determine the sensitivity of a critical point, to parameters
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or initial conditions. Specifically we must calculate the derivatives ∂u/∂p|t=tcp and
∂t/∂p|t=tcp where tcp denotes the time when the solution is at a critical point ucp.

Lemma 2 (Sensitivity of Critical Points). The derivative dtcp/dp is given by

dtcp

dp
= −

(
∂ f

∂p
+ ∂ f

∂u

∂u

∂p

) ∣∣∣∣
t=tcp

∂ f

∂u

∣∣∣∣
t=tcp

, (83)

and ∂u/∂p|t=tcp is found numerically by solving the FSE

d

dt

[
∂u

∂p

]
= ∂ f

∂u

∂u

∂p
+ ∂ f

∂p
. (84)

Similarly, the derivative dtcp/dp is given by

dtcp

du0
= −

∂ f

∂u

∂u

∂u0

∣∣∣∣
t=tcp

∂ f

∂u

∣∣∣∣
t=tcp

, (85)

and ∂u/∂u0|t=tcp is found numerically by solving the FSE

d

dt

[
∂u

∂u0

]
= ∂ f

∂u

∂u

∂u0
. (86)

Proof. Now a critical point ucp at time tcp satisfies the property that

f (uc, tc; p) = 0. (87)

Differentiating this equation wrt. the parameter p gives the single equation

∂ f

∂u

∂u

∂p

∣∣∣∣
t=tcp

+ ∂ f

∂t

∂t

∂p

∣∣∣∣
t=tcp

+ ∂ f

∂p

∣∣∣∣
t=tcp

= 0. (88)

in the two unknowns ∂u/∂p|t=tcp ∂t/∂p|t=tcp . Solving this equation for ∂t/∂p|t=tcp

and numerically solving the above mentioned FSE for ∂u/∂p|t=tcp gives the desired
result. The other result is obtained in a similar fashion.
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9.3 Sensitivity of Periodic Solutions to Parameters

Consider the IVP where the forward solution u approaches a limit cycle of period
T as t → ∞. As is almost aways the case, a closed form of the forward solu-
tion is not available, in which case the derivative ∂T /∂p can not be explicitly
obtained.

As seen from the previous examples, the key to obtaining the desired derivative
is to state, mathematically, the desired property, apply the chain rule, and possibly
utilize the solution to the FSEs. In this example, the key observation is that if u is
periodic with period T , where t ∈ [0,∞), u0 and u0

′ are given initial conditions,
and p is a parameter, then

u(t + T ; u0, u0
′, p) = u(t ; u0, u0

′, p), ∀t ∈ [0,∞).

We will differentiate this expression wrt. the parameter p and find a numerical
expression for dT /dp, in terms of the forward sensitivity derivatives. The following
lemma gives the desired expressions.

Lemma 3 (Sensitivity of a periodic function). Let u = u(t ; u0, u0
′, p) be a family

of periodic functions with period T , that is,

u(t + T ; u0, u0
′, p) = u(t ; u0, u0

′, p), (89)

∀t ∈ [0,∞) and where u is differentiable in t , u0, u0
′, and p. The derivative of the

period T with respect to the parameter p is given by

dT
dp

=

∂u(t ; u0, u0
′, p)

∂p
− ∂u(s; u0, u0

′, p)

∂p

∣∣∣∣
s=t+T

du(t ; u0, u0
′, p)

dt

. (90)

The astute reader is no doubt immediately suspicious of this result, since the left
hand side seems to be independent of time, while the right hand side is apparently
time dependent. However, this “contradiction” will be addressed shortly.

Proof. Differentiate Equation (89) wrt. the parameter p to get

d

dp

[
u(s; u0, u0

′, p)
] ∣∣∣∣

s=t+T
= d

dp

[
u(t ; u0, u0

′, p)
]
,
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or in expanded form

du(s; u0, u0
′, p)

ds

∣∣∣∣
s=t+T

d[t + T ]

dp
+ ∂u(s; u0, u0

′, p)

∂u0

∣∣∣∣
s=t+T

du0

dp
+ ∂u(s; u0, u0

′, p)

∂u0
′

∣∣∣∣
s=t+T

du0
′

dp
+ ∂u(s; u0, u0

′, p)

∂p

∣∣∣∣
s=t+T

= du(t ; u0, u0
′, p)

dt

dt

dp
+ ∂u(t ; u0, u0

′, p)

∂u0

du0

dp

+∂u(t ; u0, u0
′, p)

∂u0
′

du0
′

dp
+ ∂u(t ; u0, u0

′ p)

∂p
. (91)

Since t , u0, and u0
′ are independent of p, then dt/dp = du0/dp = du0

′/dp = 0,
in which case this equation reduces to

du(s; u0, u0
′, p)

ds

∣∣∣∣
s=t+T

dT
dp

+ ∂u(s; u0, u0
′, p)

∂p

∣∣∣∣
s=t+T

= ∂u(t ; u0, u0
′, p)

∂p
.

Now solve for dT /dp and use the fact that since u is periodic in t , then

du(s; u0, u0
′, p)

ds

∣∣∣∣
s=t+T

= du(t ; u0, u0
′, p)

dt
,

to obtain the result stated as Equation (89).

A cautionary note is needed to prevent misapplication of this result. The formula
given in Equation (89) is for an arbitrary time t as compared to previous examples,
where the formula for the derivative of a particular aspect of a problem was valid
only at a particular specified point in time. In other words, for a fixed value of the
parameter p and initial conditions u0, and u0

′ the expression dT /dp should remain
constant if the period T is independent of time. That is, we must assume that the
periodicity of the solution is not changing, or, at worst, is approaching a fixed value.
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