Stat 5100 Handout #10.b — Influential Observations and Outliers
Recall model Y = By + 51 X1 + ...+ 3,1 X,1 + ¢

There may be points (individual observations) that are: \Maﬁ"“ 3 de rgb‘
e not “well-explained” by the model ’g vo¥-p'°

- may be called outliers (usually outliers in Y)

e unduly influencing the model fit (the b estimates or the Y predicted values)
- may be called influential observations (usually outliers in X'’s)

Based on only a consideration of the residuals, one is not necessarily a subset of the other
- depends on the nature of influence and the sample size

Use both numerical and graphical diagnostics (to enhance, not replace, scatter plots):

e Main diagnostics for Influential Observations: = heve u,\Ju,_ ;\%u nCe o

1. Hat matrix diagonals o "p‘f’{- "f Mo"& -f."f
2. DFBETAS

3. DFFITS

4. Cooks Distance
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1. Hat matrix diagonals ( ’CU“""jCS

Recall (from Ch. 5) that H projects Y down to column space of X:
Y=XB+e b=(XX)'XY

Y = Xb=X(X'X)'X'Y = HY
f——

Let h;; be the element in row ¢ and column [ of H
- sometimes called “leverage” (influence of obs. i on its fitted value)

Since Y = HY . then Y, = S hitY

What would a “larger” diagonal element h;; mean?
— Y, is more influential in determining Y;

How large must h;; be to declare observation ¢ as “influential”?
e rule of thumb: h;; >!27f;or hi; > %p

e can plot h;; against élaservation number, with reference lines at 2p/n and 3p/n
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Another graphical diagnostic with h; ;:

MS’*‘B X
e leverage plots (partial regression plots); for X1~ C?wporm#""' wise ) T
1. Regress X on Xy, ..., X,_; and obtain residual . Wﬁ(ﬂ“‘lf(
. Regress X; on X,,..., X, ; and obtain residuals m ol tur prelacecs
2. Regress Y on Xy,..., X, 1 and obtain residuals ey|x,,.. x, ,

3. Plot ey|x,,..x,_1 VS. €x,|X,,...x,_,, and add regression line

— slope will be b; from multiple regression model
— useful as “added variable” plot — check for curvilinearity

e (possible) modification here: point-size in leverage plot proportional to correspond-
il’lg hi,i

S\Ow - — then this is called a proportional leverage plot

— influential observations will be the points with big “bubbles” that appear to
“pull” the regression line in their direction

2. DFBETAS

“DF” means “different” here

e How different would est. of 5,’s be without observation in data:

b, = estimate of By using full data
briy = estimate of 3; when observation i is ignored
MSE; = Mean SS for error when observation 7 is ignored
C = k" diagonal element of (X'X)™"
b, — b
DFBETASy; = ——e—e

JMSE;)Ch

o Interpreting DFBETAS:
— DFBETASy;) positive: obs. 7 “pulls” b, up
— DFBETAS ;) negative: obs. ¢ “pulls” b, down

How “large” to declare observation ¢ “influential” on b;?

e Rough rule of thumb:
|DFBETASy)| > 1 for n < 30

‘DFBETAS;C(M >‘2/\/ﬁi é)r_n&_a 5)45 (‘¢-*€- I.‘-M
e Graphical diagnostics probably better for DFBETAS:

— Histograms or boxplots for ea,chJ k
— Proportional leverage plot with “bubble” size prop. to DEBETAS,;
s A»S —— Plot DFBETAS,;) against obs. number for eachﬁ
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3. DFFITS

Similar to DFBETAS: how different would YZ be
if observation ¢ were not used to fit the model

~ ~

Y — Yiu)
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How large DFFITS to declare obs. i as influential on Y;?

DFFITS,; =

e Rough rule of thumb:

|DFFITS;| > 1 for n < 30

Line
|DFFITSZ-|>M 5’15 r"t'@

e Good graphical diagnostics for DFFITS:
r? #S —*» — Plot DFFITS vs. Observation Number

— Plot Residuals vs. Predicted Values, with point sizes proportional to corre-
sponding DFFITS;

(DFBETAS;; vs. DFFITS;) vs. h,, U‘”"“‘S‘)

e somewhat related, so “conclusions” will quite often agree

e BUT: if two or more points exert “influence” together then the drop-one diagnostics
(DFBETAS and DFFITS) may not detect them

— these are leverage points - need to look at h;;
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4. Cooks Distance
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Kind of an overall measure of effect of obs. 7 on all of the Yl values:

Diagnostics:

o Numerical:

— simple: compare D; with{4/n/—> 5’45 "‘-'e' Z/\'\L

Ll/ub\‘ — more useful: compare D; with the F,,_, distribution
. \ J’* x percentile 10-20: little influence
hi ol x percentile 504: major influence
e Graphical: plot D; (or percentile from F,,_,) vs. observation number ¢ ¢
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(5. Residuals)

e =Y, =Y

Sometimes a large |e;| indicates an outlier
e not well-explained by fitted model
e but how “large” it needs to be depends on the residuals: (,(' L\ ._\
L

O'
— Recall € ~ N(0,0%), s0 ¢; ~ N(0,0%(1 — hy;)) Ve (L \ —_—
—because Y = HY resultsine=Y — HY = (I — H)Y Sb(c ‘—) = J Vet (ed
— Could compare e; with the normal critical values, but need to estimate variance
(including 0?) = normal approx. not appropriate; need Student’s ¢

n
T = mMSF

(6. Studentized Residuals) &.

i = o ” ( ) t
VMSE - (1— hy)
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If ¢; iid N(0,0?), then the r; follow the ¢,_, distribution; diagnostics:

e Numerical: compare |r;| with upper «/2 critical value of ¢,,_,

e Graphical: plot Y; vs. r;, with ref. lines at upper a/2 critical value of t,,_,

7. Studentized Deleted Residuals R _S-l'd_ J Lﬁ‘{‘ ( ) 45 3 wc/mﬁr

If obs. 7 really is an outlier, then including it in the data will inflate M SE
- So consider dropping it and re-calculating the studentized residual:

€;
¢MSE — hy)

umst Lam mr‘J ﬁt'l’ v/bu+ L; i

Diagnostics similar to'Studentlzed Residuals:

(Text uses t; instead of e)

'+es .“' -‘.a.- :
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e compare to |ef| to some critical value of ¢,,_, (for each of i =1,...,n)

BUT: a = probability of type I error (calling obs. i outlier when it’s not)

— actually want « to be probability of at least one type I error in all n tests 'h Y
— a family-wise error rate wsl %y fods ) mz,_ “

af
— many ways to adjust the critical value; here, we’ll use Bonferronl correction:
( I’j " sAS)

compare |ef| to upper a/(2n) critical value of t,_,
L *""" o
?
4 : 2n
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Remedial Measures for Influential Observations or Outliers

1. Look for:

e typos in data (more common than would like to think)
e fundamental differences in observations

— drop obs. if from a different “population”
e very skewed distributions of predictors

— remember that in general, there is no assumption regarding the distribu-
tion of X'’s

— sometimes transforming X will reduce influence of obs. with extreme
values

2. Look at potential changes to model:

e will a transformation “bring in” the observations?
e should a curvilinear or other predictor be added?

— look at leverage plot for the possible predictor
— any trend suggests adding it to model

3. Could obtain estimates differently (instead of OLS, robust regression; see Ch. 11):

e LAD (least absolute deviation) regression

e IRLS (iteratively reweighted least squares) regression



