Stat 5100 Handout #10.b – Influential Observations and Outliers not necessarily love points in boxplat of residuals

Recall model $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_{p-1} X_{p-1} + \varepsilon$

There may be points (individual observations) that are:

- not "well-explained" by the model - may be called <u>outliers</u> (usually outliers in Y)
- unduly influencing the model fit (the b_k estimates or the \hat{Y} predicted values) - may be called influential observations (usually outliers in X's)

Based on only a consideration of the residuals, one is not necessarily a subset of the other - depends on the nature of influence and the sample size

Use both numerical and graphical diagnostics (to enhance, not replace, scatter plots):

- Main diagnostics for Influential Observations: have undue influence on some aspect of model fit
 - 1. Hat matrix diagonals
 - 2. DFBETAS
 - 3. DFFITS
 - 4. Cooks Distance

- Main diagnostics for Outliers: not well explained by modul
 5. (Residuals)
 6. (Studentized Residuals)
 7. Studentized Deleted Residuals
 9. 1/2 1/2
 9. 1/2 1/2

1. Hat matrix diagonals (leverage)

butlie r

Recall (from Ch. 5) that H projects Y down to column space of X:

$$Y = X\beta + \varepsilon \qquad b = (X'X)^{-1}X'Y$$

$$\hat{Y} = Xb = X(X'X)^{-1}X'Y = HY$$

Let $h_{i,l}$ be the element in row *i* and column *l* of *H* - sometimes called "leverage" (influence of obs. *i* on its fitted value)

Since $\hat{Y} = HY$, then $\hat{Y}_i = \sum_{l=1}^n h_{i,l} Y_l$

What would a "larger" diagonal element $h_{i,i}$ mean? $-Y_i$ is more influential in determining Y_i

How large must $h_{i,i}$ be to declare observation *i* as "influential"?

- rule of thumb: $h_{i,i} > \frac{2p}{n}$ or $h_{i,i} >$
- can plot $h_{i,i}$ against bservation n

$$> \frac{2p}{n} \text{ or } h_{i,i} > \frac{3p}{n}$$
bbservation number, with reference lines at $2p/n$ and $3p/n$

$$> SAS cof. line in Rstudent vs. Lawrage Plot$$

Y:

Another graphical diagnostic with $h_{i,i}$:

- leverage plots (partial regression plots); for X_1 :
- each predictor represents what's left over [Cinformation-wise) in X, after accounting 1. Regress X_1 on X_2, \ldots, X_{p-1} and obtain residuals $e_{X_1|X_2,\ldots,X_{p-1}}$
 - 2. Regress Y on X_2, \ldots, X_{p-1} and obtain residuals $e_{Y|X_2,\ldots,X_{p-1}}$
 - 3. Plot $e_{Y|X_2,\dots,X_{p-1}}$ vs. $e_{X_1|X_2,\dots,X_{p-1}}$, and add regression line
 - slope will be b_1 from multiple regression model
 - useful as "added variable" plot check for curvilinearity
- (possible) modification here: point-size in leverage plot proportional to corresponding $h_{i,i}$
- Ing m_{i,i}
 then this is called a proportional leverage plot
 influential observations will be the points with big "bubbles" that appear to "pull" the regression line in their direction

2. DFBETAS

"DF" means "different" here

• How different would est. of β_k 's be without observation in data:

$$b_{k} = \text{estimate of } \beta_{k} \text{ using full data}$$

$$b_{k(i)} = \text{estimate of } \beta_{k} \text{ when observation } i \text{ is ignored}$$

$$MSE_{(i)} = \text{Mean SS for error when observation } i \text{ is ignored}$$

$$C_{kk} = k^{th} \text{ diagonal element of } (X'X)^{-1}$$

$$DFBETAS_{k(i)} = \frac{b_{k} - b_{k(i)}}{\sqrt{MSE_{(i)}C_{kk}}}$$

- Interpreting DFBETAS:
 - DFBETAS_{k(i)} positive: obs. i "pulls" b_k up
 - DFBETAS_{k(i)} negative: obs. *i* "pulls" b_k down

How "large" to declare observation i "influential" on b_k ?

- *Rough* rule of thumb:
 - $|DFBETAS_{k(i)}| > 1$ for $n \le 30$

$$|DFBETAS_{k(i)}| > 2/\sqrt{n}$$
 for $n > 30$, SAS ref. line

- Graphical diagnostics probably better for DFBETAS:
 - Histograms or boxplots for each \neq k
 - Proportional leverage plot with "bubble" size prop. to DFBETAS_{k(i)}
- \neg Plot DFBETAS_{k(i)} against obs. number for each k

predictor

3. DFFITS

Similar to DFBETAS: how different would \hat{Y}_i be if observation i were not used to fit the model

$$DFFITS_i = \frac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{MSE_{(i)}h_{i,i}}}$$

How large DFFITS to declare obs. *i* as influential on \hat{Y}_i ?

• *Rough* rule of thumb:

$$|DFFITS_i| > 1$$
 for $n \le 30$
 $|DFFITS_i| > 2\sqrt{\frac{p}{n}}$ for $n > 30$ SAS ref Line

- Good graphical diagnostics for DFFITS:
- Plot DFFITS vs. Observation Number
 - Plot Residuals vs. Predicted Values, with point sizes proportional to corresponding $DFFITS_i$

(DFBETAS_{ij} vs. DFFITS_i) vs. $h_{i,i}$ (leverage)

- somewhat related, so "conclusions" will quite often agree
- BUT: if two or more points exert "influence" together then the drop-one diagnostics (DFBETAS and DFFITS) may not detect them

- these are leverage points - need to look at $h_{i,i}$

4. Cooks Distance

Kind of an overall measure of effect of obs. i on all of the \hat{Y}_l values:

$$D_i = \frac{\sum_{j=1}^n \left(\hat{Y}_j - \hat{Y}_{j(i)} \right)^2}{p \cdot \text{MSE}}$$

lue influence

٥i

Fp,n-p

Diagnostics:

• Numerical:

- simple: compare
$$D_i$$
 with $4/n$ -> SAS ref. L

- more useful: compare D_i with the $F_{p,n-p}$ distribution * percentile 10-20: little influence * percentile 50+: major influence

• Graphical: plot D_i (or percentile from $F_{p,n-p}$) vs. observation number i

(5. Residuals)

 $e_i = Y_i - \hat{Y}_i$

Sometimes a large $|e_i|$ indicates an outlier

- not well-explained by fitted model
- but how "large" it needs to be depends on the residuals:
- $Var(e_{i}) = \sigma^{2} \cdot (l h_{ii})$ - Recall $\varepsilon \sim N(0, \sigma^2)$, so $e_i \sim N(0, \sigma^2(1 - h_{ii}))$ - because $\hat{Y} = HY$ results in e = Y - HY = (I - H)Y $SD(c_i) = \sqrt{Var(e_i)}$
 - Could compare e_i with the normal critical values, but need to estimate variance (including σ^2) \Rightarrow normal approx. not appropriate; need Student's t
 - $\hat{\sigma}^2 = m S E$

t_{n-p}

H. und

rl

(6. Studentized Residuals)

If ε_i iid $N(0, \sigma^2)$, then the r_i follow the t_{n-p} distribution; diagnostics:

- Numerical: compare $|r_i|$ with upper $\alpha/2$ critical value of t_{n-p}
- Graphical: plot \hat{Y}_i vs. r_i , with ref. lines at upper $\alpha/2$ critical value of t_{n-p}

7. Studentized Deleted Residuals

RStudent (in SAS)

If obs. i really is an outlier, then including it in the data will inflate MSE- So consider dropping it and re-calculating the studentized residual:

$$\begin{array}{rcl} \textbf{test}\\ \textbf{statistic} \rightarrow e_i^* &=& \frac{e_i}{\sqrt{MSE_{(i)}(1-h_{ii})}} & (\text{Text uses } t_i \text{ instead of } e_i^*) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$$

Diagnostics similar to Studentized Residuals:

- plot \hat{Y}_i vs. e_i^*
- compare to $|e_i^*|$ to some critical value of t_{n-p} (for each of $i = 1, \ldots, n$)

BUT: α = probability of type I error (calling obs. *i* outlier when it's not)

4

- actually want α to be probability of at least one type I error in all n tests – a family-wise error rate

Ho: obs. i not an outlier

- many ways to adjust the critical value; here, we'll use Bonferroni correction: (by han

compare $|e_i^*|$ to upper $\alpha/(2n)$ critical value of t_{n-p}

Remedial Measures for Influential Observations or Outliers

- 1. Look for:
 - typos in data (more common than would like to think)
 - fundamental differences in observations
 - drop obs. if from a different "population"
 - very skewed distributions of predictors
 - remember that in general, there is no assumption regarding the distribution of $X\sp{'s}$
 - sometimes transforming X will reduce influence of obs. with extreme values
- 2. Look at potential changes to model:
 - will a transformation "bring in" the observations?
 - should a curvilinear or other predictor be added?
 - look at leverage plot for the possible predictor
 - any trend suggests adding it to model
- 3. Could obtain estimates differently (instead of OLS, robust regression; see Ch. 11):
 - LAD (least absolute deviation) regression
 - IRLS (iteratively reweighted least squares) regression