
Stat 5100 Handout #10.b – Influential Observations and Outliers

Recall model Y = β0 + β1X1 + . . .+ βp−1Xp−1 + ε

There may be points (individual observations) that are:

• not “well-explained” by the model
- may be called outliers (usually outliers in Y )

• unduly influencing the model fit (the bk estimates or the Ŷ predicted values)
- may be called influential observations (usually outliers in X’s)

Based on only a consideration of the residuals, one is not necessarily a subset of the other
- depends on the nature of influence and the sample size

Use both numerical and graphical diagnostics (to enhance, not replace, scatter plots):

• Main diagnostics for Influential Observations:

1. Hat matrix diagonals

2. DFBETAS

3. DFFITS

4. Cooks Distance

• Main diagnostics for Outliers:

5. (Residuals)

6. (Studentized Residuals)

7. Studentized Deleted Residuals

1. Hat matrix diagonals

Recall (from Ch. 5) that H projects Y down to column space of X:

Y = Xβ + ε b = (X ′X)−1X ′Y

Ŷ = Xb = X(X ′X)−1X ′Y = HY

Let hi,l be the element in row i and column l of H
- sometimes called “leverage” (influence of obs. i on its fitted value)

Since Ŷ = HY , then Ŷi =
∑n

l=1 hi,lYl

What would a “larger” diagonal element hi,i mean?

– Yi is more influential in determining Ŷi

How large must hi,i be to declare observation i as “influential”?

• rule of thumb: hi,i >
2p
n

or hi,i >
3p
n

• can plot hi,i against observation number, with reference lines at 2p/n and 3p/n
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Another graphical diagnostic with hi,i:

• leverage plots (partial regression plots); for X1:

1. Regress X1 on X2, . . . , Xp−1 and obtain residuals eX1|X2,...,Xp−1

2. Regress Y on X2, . . . , Xp−1 and obtain residuals eY |X2,...,Xp−1

3. Plot eY |X2,...,Xp−1 vs. eX1|X2,...,Xp−1 , and add regression line

– slope will be b1 from multiple regression model

– useful as “added variable” plot – check for curvilinearity

• (possible) modification here: point-size in leverage plot proportional to correspond-
ing hi,i

– then this is called a proportional leverage plot

– influential observations will be the points with big “bubbles” that appear to
“pull” the regression line in their direction

2. DFBETAS

“DF” means “different” here

• How different would est. of βk’s be without observation in data:

bk = estimate of βk using full data

bk(i) = estimate of βk when observation i is ignored

MSE(i) = Mean SS for error when observation i is ignored

Ckk = kth diagonal element of (X ′X)
−1

DFBETASk(i) =
bk − bk(i)√
MSE(i)Ckk

• Interpreting DFBETAS:

– DFBETASk(i) positive: obs. i “pulls” bk up

– DFBETASk(i) negative: obs. i “pulls” bk down

How “large” to declare observation i “influential” on bk?

• Rough rule of thumb:

|DFBETASk(i)| > 1 for n ≤ 30

|DFBETASk(i)| > 2/
√
n for n > 30

• Graphical diagnostics probably better for DFBETAS:

– Histograms or boxplots for each j

– Proportional leverage plot with “bubble” size prop. to DFBETASk(i)

– Plot DFBETASk(i) against obs. number for each k
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3. DFFITS

Similar to DFBETAS: how different would Ŷi be
if observation i were not used to fit the model

DFFITSi =
Ŷi − Ŷi(i)√
MSE(i)hi,i

How large DFFITS to declare obs. i as influential on Ŷi?

• Rough rule of thumb:

|DFFITSi| > 1 for n ≤ 30

|DFFITSi| > 2
√

p
n

for n > 30

• Good graphical diagnostics for DFFITS:

– Plot DFFITS vs. Observation Number

– Plot Residuals vs. Predicted Values, with point sizes proportional to corre-
sponding DFFITSi

(DFBETASij vs. DFFITSi) vs. hi,i

• somewhat related, so “conclusions” will quite often agree

• BUT: if two or more points exert “influence” together then the drop-one diagnostics
(DFBETAS and DFFITS) may not detect them

– these are leverage points - need to look at hi,i

4. Cooks Distance

Kind of an overall measure of effect of obs. i on all of the Ŷl values:

Di =

∑n
j=1

(
Ŷj − Ŷj(i)

)2
p ·MSE

Diagnostics:

• Numerical:

– simple: compare Di with 4/n

– more useful: compare Di with the Fp,n−p distribution

∗ percentile 10-20: little influence

∗ percentile 50+: major influence

• Graphical: plot Di (or percentile from Fp,n−p) vs. observation number i
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(5. Residuals)

ei = Yi − Ŷi

Sometimes a large |ei| indicates an outlier

• not well-explained by fitted model

• but how “large” it needs to be depends on the residuals:

– Recall ε ∼ N(0, σ2), so ei ∼ N(0, σ2(1− hii))
– because Ŷ = HY results in e = Y −HY = (I −H)Y

– Could compare ei with the normal critical values, but need to estimate variance
(including σ2) ⇒ normal approx. not appropriate; need Student’s t

(6. Studentized Residuals)

ri =
ei√

MSE · (1− hii)
(MSE = σ̂2)

If εi iid N(0, σ2), then the ri follow the tn−p distribution; diagnostics:

• Numerical: compare |ri| with upper α/2 critical value of tn−p

• Graphical: plot Ŷi vs. ri, with ref. lines at upper α/2 critical value of tn−p

7. Studentized Deleted Residuals

If obs. i really is an outlier, then including it in the data will inflate MSE
- So consider dropping it and re-calculating the studentized residual:

e∗i =
ei√

MSE(i)(1− hii)
(Text uses ti instead of e∗i )

Diagnostics similar to Studentized Residuals:

• plot Ŷi vs. e∗i

• compare to |e∗i | to some critical value of tn−p (for each of i = 1, . . . , n)

BUT: α = probability of type I error (calling obs. i outlier when it’s not)

– actually want α to be probability of at least one type I error in all n tests
– a family-wise error rate

– many ways to adjust the critical value; here, we’ll use Bonferroni correction:

compare |e∗i | to upper α/(2n) critical value of tn−p
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Remedial Measures for Influential Observations or Outliers

1. Look for:

• typos in data (more common than would like to think)

• fundamental differences in observations

– drop obs. if from a different “population”

• very skewed distributions of predictors

– remember that in general, there is no assumption regarding the distribu-
tion of X’s

– sometimes transforming X will reduce influence of obs. with extreme
values

2. Look at potential changes to model:

• will a transformation “bring in” the observations?

• should a curvilinear or other predictor be added?

– look at leverage plot for the possible predictor

– any trend suggests adding it to model

3. Could obtain estimates differently (instead of OLS, robust regression; see Ch. 11):

• LAD (least absolute deviation) regression

• IRLS (iteratively reweighted least squares) regression
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