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STAT 5200 Handout #23 
 

Repeated Measures Example (Ch. 16)  
and Crossover Design Example (Ch. 13 & 16) 

 
Example 1: Glucose 
 
An experiment is conducted to evaluate the effects of three diets on the serum glucose 
levels of human subjects. Twelve people participate in the experiment and are randomly 
assigned to the three diets. Serum glucose measurements are made 15, 30, and 45 minutes 
after eating a meal from the appropriate diet. That is, there is one measurement per 
subject per time period.  
 

Diet: 1 2 3 
Subject: 1 2 3 4 5 6 7 8 9 10 11 12 

Time: 15 x x x x x x x x x x x x 
 30 x x x x x x x x x x x x 
 45 x x x x x x x x x x x x 

 
The treatment structure in this experiment is that of a completely randomized design.  
There is one factor with three levels, and the “experimental units” (subjects) are 
randomly assigned to the factor levels. However, we have three measurements on each 
subject collected over time so this experiment is a repeated measures design. 
 
This looks similar to a split-plot design: 

 Whole-plot factor: Diet 
 Whole-plot unit: Subject 
 Split-plot factor: Time 
 Split-plot unit: Subject (at particular time) 

However, unlike the split-plot design, here there is only one randomization (for the 
whole-plot factor).  The split-plot factor (time) is not randomized to split-plot units. 
 
Hasse Diagram 
 
 
 
 
 
 
 
 
Model 
 

Yijk = µ   +   Dieti   + Subjk(i) 
 
 +   Timej   +   Diet×Timeij   +   εk(ij)   
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Covariance Structure 
 
Because of the lack of randomization at the split-plot level, each subject’s measurements 
across time levels are dependent.  A key feature of the model for repeated measures data 
is that we allow / account for this dependence by defining a covariance matrix for the 
multivariate response (across time) for each subject. 
 
Here, think of each subject’s error values (ε) as a length-3 vector (for 3 time points): 
 

ε = ൥
εଵହ

εଷ଴

εସହ

൩  Cov[ε] = ቎
𝑉𝑎𝑟(εଵହ) 𝐶𝑜𝑣(εଵହ, εଷ଴) 𝐶𝑜𝑣(εଵହ, εସହ)

𝐶𝑜𝑣(εଵହ, εଷ଴) 𝑉𝑎𝑟(εଷ଴) 𝐶𝑜𝑣(εଷ଴, εସହ)
𝐶𝑜𝑣(εଵହ, εସହ) 𝐶𝑜𝑣(εଷ଴, εସହ) 𝑉𝑎𝑟(εସହ)

቏ 

 
We have previously assumed the ε’s are iid N(0,σ2), so Cov[ε]= σ2 I.  But now we need to 
specify dependence in a symmetric covariance matrix.  Many possible structures exist.  
The table below shows just a few: 
 

Description Structure (Type = ... ) Example   (Cov[ε]) 
 

Compound  
Symmetry 

 

 
 

CS 

 

቎

𝜎ଶ + 𝜑 𝜑 𝜑

𝜑 𝜎ଶ + 𝜑 𝜑

𝜑 𝜑 𝜎ଶ + 𝜑

቏ 

 
First-Order 

Autoregressive 

 
 

AR(1) 

 

𝜎ଶ ቎

1 𝜌 𝜌ଶ

𝜌 1 𝜌

𝜌ଶ 𝜌 1

቏ 

 
 
 

Unstructured 

 
 

UN 

 

቎

𝜎ଵ
ଶ 𝜎ଵଶ 𝜎ଵଷ

𝜎ଵଶ 𝜎ଶ
ଶ 𝜎ଶଷ

𝜎ଵଷ 𝜎ଶଷ 𝜎ଷ
ଶ

቏ 

 
 

First-Order 
Autoregressive 

Moving-Average 

 
 

ARMA(1,1) 

 

𝜎ଶ ൥

1 𝛾 𝛾𝜌
𝛾 1 𝛾

𝛾𝜌 𝛾 1
൩ 

 

How to choose a structure?   

One reasonable approach is to obtain the AICC fit statistic (found in output) for several 
possible structures; smaller AICC values indicate more parsimonious models (better fit 
with fewer parameters). 

 



 3

/* STAT 5200 
   repeated measures design 
   glucose data 
 */ 
 
/* Define options */ 
ods html image_dpi=300 style=journal; 
 
/* Read in data */ 
data glucose; 
 input Diet Subj Time Glucose @@;  cards; 
1  1 15 22 1  1 30 34 1  1 45 32 1  2 15 15 1  2 30 29 1  2 45 27 
1  3 15 12 1  3 30 33 1  3 45 28 1  4 15 21 1  4 30 40 1  4 45 39 
2  5 15 22 2  5 30 18 2  5 45 12 2  6 15 23 2  6 30 22 2  6 45 10 
2  7 15 18 2  7 30 16 2  7 45  9 2  8 15 25 2  8 30 24 2  8 45 15 
3  9 15 31 3  9 30 30 3  9 45 39 3 10 15 28 3 10 30 27 3 10 45 36 
3 11 15 24 3 11 30 26 3 11 45 36 3 12 15 21 3 12 30 26 3 12 45 32 
; 
run; 
 
/* Fit Compound Symmetry Covariance Structure */ 
 
proc glimmix data=glucose plots=residualpanel; 
 
  class Diet Time Subj; 
 
  model Glucose = Diet | Time ; 
 
  random intercept / Rside V   
         subject=Subj(Diet) type=cs; 
    /* 1. 'V' requests within-subject estimated  
     covariance matrix of error terms   
       2. 'intercept' here when no other  
    random terms in model (besides subject) 
    3. 'Rside' here specifies that dependence is among  
        the error terms within subject  
  */ 
 
  covtest 'Zero Covariance' diagR; 
    /* Tests null that off-diagonal elements are all zero 
       in covariance matrix of error terms  
     */ 
 
  title1 'Compound Symmetry Covariance Structure'; 
 
run; 
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 Compound Symmetry Covariance Structure 

 

Convergence criterion (ABSGCONV=0.00001) satisfied. 

 

Fit Statistics 

AICC (smaller is better) 148.37 

 

Estimated V Matrix for Subj(Diet) 
1 1 

Row Col1 Col2 Col3 

1 14.8333 11.4167 11.4167 

2 11.4167 14.8333 11.4167 

3 11.4167 11.4167 14.8333 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error 

CS Subj(Diet) 11.4167 5.9309 

Residual   3.4167 1.1389 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Diet 2 9 12.78 0.0023 

Time 2 18 27.96 <.0001 

Diet*Time 4 18 66.98 <.0001 

 

Tests of Covariance Parameters 
Based on the Restricted Likelihood 

Label DF -2 Res Log Like ChiSq Pr > ChiSq Note 

Zero Covariance 1 161.92 18.04 <.0001 DF 

 
DF: P-value based on a chi-square with DF degrees of freedom 
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/* Fitting same model, look at  
   interaction plot and contrast */ 
proc glimmix data=glucose; 
  class Diet Time Subj; 
  model Glucose = Diet | Time ; 
  random intercept / Rside V   
         subject=Subj(Diet) type=cs; 
 
  lsmeans Diet*Time /  
     pdiff=all adjust=Tukey lines 
     plot=mean(sliceby=Diet join); 
 /* Recall interaction plot code */ 
 
  contrast 'Last Contrast!' 
    Time 0 2 -2 
 Diet*Time  0  1 -1 
            0  0  0 
    0  1 -1; 
  estimate 'Estimate of Last Contrast' 
    Time 0 2 -2 Diet*Time  0  1 -1  0  0  0  0  1 -1; 
 /* Averaging over over Diets 1 and 3 only, 
       compare Time30 with Time45 */ 
 
run; 
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Tukey-Kramer Grouping 
for Diet*Time Least 

Squares Means (Alpha=0.05) 

LS-means with the same letter  
are not significantly different. 

Diet Time Estimate   

3 45 35.7500     A   

1 30 34.0000 B   A   

1 45 31.5000 B   A C 

3 30 27.2500 B   D C 

3 15 26.0000 B E D C 

2 15 22.0000   E D C 

2 30 20.0000   E D   

1 15 17.5000   E F   

2 45 11.5000     F   
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Estimates 

Label Estimate Standard Error DF t Value Pr > |t| 

Estimate of Last Contrast -6.0000 1.8484 18 -3.25 0.0045 

 

Contrasts 

Label Num DF Den DF F Value Pr > F 

Last Contrast! 1 18 10.54 0.0045 

  
 
 
 
One Last Contrast: 
 
Looking at the interaction plot, it appears that maybe there really isn’t a difference 
between Time30 and Time45 when averaging over Diets 1 and 3 only.  As before, we can 
test this using a contrast: 
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Example 2: Crossover design 
 
A study was conducted to compare the duration of effects of three different drug 
formulations (1 = 50-mg tablet; 2 = 100-mg tablet; 3 = sustained-release capsule) on 
lowering blood pressure.  Twelve males volunteered to participate.  In order to compare 
formulation effects within subject, each subject took each formulation, one in each of 
three time periods.  To avoid a carryover effect of one formulation to the next, a one-
week washout period was followed by each subject.  In order to avoid confounding 
formulation effect with time period effect, subjects were randomly assigned to a certain 
sequence of taking the three formulations: 
 

Formulation Sequence: 1-2-3 2-3-1 3-1-2 
Subject: 1 2 3 4 5 6 7 8 9 10 11 12 

Time Period: 1 x x x x x x x x x x x x 
2 x x x x x x x x x x x x 
3 x x x x x x x x x x x x 

 
Note that this looks a lot like the repeated measures design in Example 1.  It also bears 
similarity to a Latin Square design: 
 

  Period  
  1 2 3 # Subjects 

Se
qu

en
ce

 1-2-3 1 2 3 4 
2-3-1 2 3 1 4 
3-1-2 3 1 2 4 

 
 
Hasse Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model 
 

Yijkl = μ + Trti + Pj + TPij + Seqk + Subjl(k) + εijl(k) 
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data drug; input Seq Subj P Trt duration @@; cards; 
 1 1 1 1 1.5  1 1 2 2 2.2  1 1 3 3 3.4  
 1 2 1 1 2.0  1 2 2 2 2.6  1 2 3 3 3.1 
 1 3 1 1 1.6  1 3 2 2 2.7  1 3 3 3 3.2 
 1 4 1 1 1.1  1 4 2 2 2.3  1 4 3 3 2.9 
 2 5 1 2 2.5  2 5 2 3 3.5  2 5 3 1 1.9 
 2 6 1 2 2.8  2 6 2 3 3.1  2 6 3 1 1.5 
 2 7 1 2 2.7  2 7 2 3 2.9  2 7 3 1 2.4 
 2 8 1 2 2.4  2 8 2 3 2.6  2 8 3 1 2.3 
 3 9 1 3 3.3  3 9 2 1 1.9  3 9 3 2 2.7 
 3 10 1 3 3.1 3 10 2 1 1.6 3 10 3 2 2.5  
 3 11 1 3 3.6 3 11 2 1 2.3 3 11 3 2 2.2 
 3 12 1 3 3.0 3 12 2 1 2.5 3 12 3 2 2.0 
 ; 
 
proc glimmix data=drug plots=residualpanel; 
 class Seq Trt P Subj; 
 model duration = Seq Trt P; 
 random intercept / Rside subject=Subj(Seq) type=cs; 
 covtest 'Zero covariance' diagR; 
run;  /* Note no significant evidence of dependence here */ 
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proc glimmix data=drug plots=residualpanel; 
 class Seq Trt P Subj; 
 model duration = Seq Trt P; 
 random Subj(Seq); 
 lsmeans Trt / pdiff=all adjust=tukey lines; 
run;  
 

 
 

 
 
 
 


