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Abstract Integrating experimental biology laboratory exercises with mathematical mod-
eling can be an effective tool to enhance mathematical relevance for biologists and to
emphasize biological realism for mathematicians. This paper describes a lab project de-
signed for and tested in an undergraduate biomathematics course. In the lab, students
follow and track the paths of individual brine shrimp confined in shallow salt water in
a Petri dish. Students investigate the question, “Is the movement well characterized as
a 2-dimensional random walk?” Through open, but directed discussions, students derive
the corresponding partial differential equation, gain an understanding of the solution be-
havior, and model brine shrimp dispersal under the experimental conditions developed in
class. Students use data they collect to estimate a diffusion coefficient, and perform ad-
ditional experiments of their own design tracking shrimp migration for model validation.
We present our teaching philosophy, lecture notes, instructional and lab procedures, and
the results of our class-tested experiments so that others can implement this exercise in
their classes. Our own experience has led us to appreciate the pedagogical value of al-
lowing students and faculty to grapple with open-ended questions, imperfect data, and the
various issues of modeling biological phenomena.

Keywords Project-based learning - Undergraduate education - Brine shrimp - Artemia
franciscana - Diffusion - Random walks

1. Introduction

Generally speaking, college mathematics teaching should evolve to better address the

needs of nonmathematicians in our rapidly changing, technologically advanced, and
information-abundant society. Mathematical pedagogy should train future scientists to
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reason inductively, discern patterns in complex data, apply mathematics in novel empiri-
cal contexts, and communicate results clearly to a broad audience. Teaching must there-
fore address multiple aspects of cognition, and students should learn to prepare written
and verbal presentations consistent with the standards and format of general scientific
communication. In this paper, we describe a two-week class project designed for a bio-
mathematics course in which students integrate experiments and models to investigate the
applicability of diffusion for understanding the dispersal of brine shrimp.

The brine shrimp diffusion project provides students with the experience of dealing
with the imperfections and realities of data collection, parameter estimation, and model
validation, thus narrowing the gap between instruction and research practices. Our goal
for this paper is to provide enough mathematical, biological, and pedagogical content
so that a mathematics professor teaching applied mathematics, differential equations, or
statistics (or a biology professor teaching a quantitative or modeling-oriented course) has
sufficient information to comfortably undertake this investigation in his or her class.

The paper proceeds with a general introduction to our pedagogical framework and
educational approaches, the course in which we have implemented the project, and our
motivation for addressing diffusion and movement. A methods section describes both the
mathematical background and biological basics for conducting the discussions and exper-
iments required for the exercise. Teaching notes are interspersed throughout this paper. In
the results section, model parameterization and validation results are analyzed and pre-
sented from our own experiments to help the implementation of the project. A summary
of student results is also included to illustrate the achievement of learning goals associ-
ated with this project. A concluding discussion section summarizes our experiences and
findings regarding best classroom practices and possible adaptations and extensions of
this movement activity.

1.1. Pedagogical framework

One important component of any instructional design is the consideration of how students
will interact with the mathematical content. Some educators believe that the central focus
of teaching should be on the transfer of knowledge, while others emphasize that students
need to be actively engaged in the construction of knowledge for themselves. The scheme
displayed in Table 1 allows us to take both perspectives into account with definitions that
describe the various cognitive activities that pertain to learning mathematics (Cangelosi,
2003). We use this scheme for organizing lesson sequences, articulating specific learning
objectives, selecting appropriate teaching strategies, and evaluating the achievement of
our learning goals. For example, while direct instructional strategies (such as lecture) are
appropriate for accomplishing simple knowledge or algorithmic skill objectives, inquiry
instructional strategies are most effective for attaining conceptual, discovery, application,
and creative thinking objectives (Cangelosi, 2003). To achieve this wide array of cognitive
objectives, we engage students in project-based learning.

The project-based learning (PBL) model focuses on driving questions or problems re-
quiring core concepts of the curriculum (Krajcik et al., 1994). While addressing the central
driving question, students engaged in PBL are involved in experimental design, data col-
lection and analysis, problem solving, inquiry, and decision making that culminates in re-
alistic products such as presentations, written reports, or physical models (Thomas, 2000;
Solomon, 2003). Throughout the learning process, the role of the teacher is to introduce
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Table 1 Scheme to classify the learning levels of mathematical lesson objectives (Cangelosi, 2003)

Domain Learning Level Examples of learning objectives
students attained through this project
Cognitive Construct a concept Provided examples of diffusion or
Use inductive reasoning, distinguish random motion in nature such as
between examples and nonexamples movement of ions, dispersal of particles,
loss of heat
Discover a relationship Observed, explained and quantified
Use inductive reasoning, discover patterns in the shrimp movement.
relationships among concepts Related the mathematical model to these
observations and discovered the
complexity involved in relating
experiment and theory. Invented and
refined experimental protocols for data
collection such as how to estimate Ny
Simple knowledge Recalled the PDE for diffusion and the
Recall a specified response (not correct units for the diffusion coefficient
multistep) to a specified stimulus
Comprehension and communication Integrated quantitative findings and
Extract and interpret meaning, use the mathematical formulae in a written
language of mathematics report of experimental results. Used the
appropriate commands and made
meaningful plots using MATLAB
Algorithmic skill Systematically gathered data for each
Recall and execute a multistep experimental procedure. Estimated
procedure parameters for the arrival densities
validation using linear regression
Application Developed a prediction for the existence
Use deductive reasoning, decide if at all of a peak in the arrival rate results based
mathematical content is relevant on PDE solution. Invented plausible
explanations for the effects of Petri dish
edges on the randomness of observed
shrimp movement
Creative thinking Provided novel explanations for
Use divergent reasoning to view discrepancies between data and model
mathematical content in unusual, novel predictions
ways
Affective Appreciation Expressed an interest in quantifying

Believe mathematical content has value

Willingness to try
Choose to attempt a mathematical task

observations made about the cute and
likable shrimp

Included an analysis of the sensitivity of
parameters in the lab report

relevant content before and during the lesson as well as guide and advise students rather
than directly manage student work (Solomon, 2003; Hmelo-Silver, 2004). There is not
one universally accepted model of PBL, but the following are defining characteristics
typically found in learning activities described as project-based learning.

First, students are confronted with authentic problems that are both central to the cur-
riculum and do not have a predetermined solution (Thomas, 2000; Solomon, 2003). This
means that in PBL, projects do not serve to illustrate examples of concepts previously
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taught or to provide extra practice. Rather, students learn the central concepts of the cur-
riculum through the project. Also, the driving questions in a PBL learning activity cannot
be so constrained as to restrict students from developing their own solution methods.
Students must be granted a certain degree of autonomy, as well as more choice and re-
sponsibility than is typically seen in traditional teaching methods (Thomas, 2000).

Second, PBL activities involve students in investigations. These investigations could
take the form of experimental design, problem solving, decision making, or model
building, with the requirement that existing knowledge is connected to newly con-
structed knowledge throughout the inquiry processes of the investigation (Thomas, 2000).
Throughout the PBL experience, students ask and refine questions, explore ideas, make
predictions, conduct experiments, analyze data, and draw conclusions while gaining new
knowledge (Krajcik et al., 1994). By the end of the PBL experience, students will have
generated artifacts that represent the solution process and solution based upon these in-
vestigations.

Lastly, the driving question around which a PBL experience is formed must be an
authentic, real world problem (Solomon, 2003). The problem must be worthwhile, by
containing important content and reflecting what actual practitioners of the given disci-
pline might encounter, while also being feasible as a source for student learning (Krajcik
et al., 1994). The success of PBL can depend largely on the chosen question, as well
as on the tasks and roles given to students to carry out during the learning process. Ac-
cording to Erickson, when choosing problems, teachers should make sure that they are
genuine problems that reflect the goals of instruction, situations that consider students’
interests and experiences, appropriate content considering students’ prior knowledge, and
of a difficulty level that will challenge the students without discouraging them (Erickson,
1999). This last factor also leads to an additional challenge for the teacher implementing
problem-based instruction. When presenting students with problems that are challenging
and do not immediately lend themselves to a certain solution strategy, teachers need to
be willing to let students struggle without offering suggested methods. However, teach-
ers also need to provide students with sufficient guidance to keep them interested in the
problem and focused (Erickson, 1999).

Many resources on undergraduate mathematics teaching have recently been published
that support the general integration of education research findings and trends into under-
graduate mathematics instruction. The reader may find some of the following resources
useful in the endeavor to improve teaching. The CUPM Curriculum Guide makes rec-
ommendations for undergraduate programs and courses in mathematics and outlines the
need for action due to the increasing scientific and technological demands of our soci-
ety (Pollatsek et al., 2004). For ideas to get students working together, see Cooperative
Learning (Rogers et al., 2001). Krantz’s book How to Teach Mathematics, Second Edition,
emphasizes the traditional lecture technique, but also contains informative appendices by
various mathematics education researchers that address reform-oriented teaching strate-
gies (Krantz, 1999). Some researchers have specifically studied the implementation of
inquiry strategies for differential equations concepts, and one example of the results of
such research is the formulation of specific types of pedagogical tools (Rassmussen and
Marrongelle, 2006). The book Math&Bio 2010 offers a variety of articles on the issues
specific to successfully integrating biology and mathematics (Steen, 2005). Following
up on that report, a recent special issue from the journal PRIMUS Problems Issues and
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Resources in Mathematics Undergraduate Studies on “Integrating Mathematics and Bi-
ology” contains several articles with specific examples of curricular links and teaching
approaches from other institutions (Ledder, 2008).

1.2. Introduction to the class

The class project presented here is part of a Utah State University class for advanced un-
dergraduate or beginning graduates entitled “Applied Mathematics in Biology” (AMB).
It was originally developed as part of a program to introduce mathematical modeling
elements into existing biology laboratory classes. The program aimed to counteract the
negative reactions of biology students to required mathematics and statistics courses by
introducing mathematical components throughout the biology curriculum. Thus, we de-
veloped modeling modules for courses from introductory freshman biology through ad-
vanced physiology and genetics courses. In addition, we developed a capstone course,
AMB, for students in USU’s BioMath minor as well as those wanting more exposure
to the interface of mathematics and laboratory experimentation. The motivation was to
confront students with the experience of doing mathematical biology in the real world
context.

AMB is open to both biologists with little mathematics (often a year of calculus) and
mathematicians with little or no biology experience. This openness has disadvantages
and advantages, as it implies wide differences in expertise. Lecture-based instruction is
particularly difficult as content background challenges only part of the class. However, it
provides a natural test situation for project-based learning, and permits a rare opportunity
for both sets of students to engage in a real world situation: collaborating with scientists
from disparate disciplines.

The course content consists of a series of projects that integrate laboratory exercises
and model development and analysis, team taught by a biologist (Haefner) and a mathe-
matician (Powell). We have taught it to as few as 5 students and as many as 12. The overall
learning goals are: (1) developing multiple mathematical models from general biological
questions (e.g., What size of prey should a fish eat?); (2) developing an experimental de-
sign appropriate to selecting among the models; (3) estimating parameters and statistically
testing model predictions with the data; (4) selecting the best of several models; (5) expe-
rience in handling biological material and dealing with messy, noisy data; (6) presenting
basic tools to analyze the model behaviors (e.g., nullclines, stability analysis); and (7)
creating a learning environment that fosters social skills needed for integrative research.
The specific topics covered were chosen to address these goals, not to cover any particular
canon of knowledge. Some of the topics covered are: epidemiology games (Powell et al.,
1998), fluids flowing from containers, yeast population growth, optimal foraging in fish,
and spatial movement of brine shrimp.

1.3. Why diffusion models?

Almost all biology occurs in a spatial context; almost every process, from propagation of
nerve impulses and oxygenation of tissue to the spread of forests after the last ice age,
involves movement in space. At times and small enough scales this movement may seem
very directed, as when ants follow pheromone trails or squirrels move seeds; at others it is
seemingly random, as in the sprint and tumble of E. coli, the foraging of ladybird larvae,
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or the dispersal of pollen in the wind. Even directed movement can be apparently random
if the cues which give it direction are stochastic from an observer’s standpoint. Depending
on the interaction between movement mechanisms, spatial heterogeneity and biological
process, models must often account for the effects of movement to faithfully describe the
natural world.

Among the most celebrated models in mathematical biology are those with a diffusive
term, including Fisher’s 1937 discussion of the spread of advantageous mutations into a
population, spatial models such as Skellam’s 1951 description and analysis of invasion
following a population introduction, and Turing’s 1952 use of diffusion models and their
instabilities to provide a theory for pattern formation (as with stripe and spot patterns in
the hides of animals) (Fisher, 1937; Skellam, 1951; Turing, 1952). Since these classics,
there have been thousands of papers and many books written about the effect of random
movement on biological dynamics. Berg’s 1993 book is an excellent starting reference on
the diffusion equation, which is the canonical PDE description of the random transport
of populations of entities (either chemical or organismal) (Berg, 1993). A special issue
of Ecology in 1994 (Miller, 1994) devoted to spatial modeling is a useful survey from
an ecological perspective, and Turchin’s 1998 book gives practical advice on connecting
diffusion models to animal movement (Turchin, 1998).

2. Methods

Our primary pedagogical approach with this project is to maintain a loosely guided con-
versation with our students, and not to instruct them through a series of prescribed steps.
Although very few have been introduced to partial differential equation (PDE) movement
models, we attempt to arrive at the labs collectively as a natural means for investigating
dispersal. Hence, our unit of instruction begins with the general observation that animals
and plants move in space. We provide some historical background, similar to that outlined
above, and initiate a discussion of patterns of animal movement. This can be sophisticated
if certain types of biologists are in the class, but in any case, everyone has watched ants
or ladybird beetles or seen fish swim, so there is always a common background. Through
directed discussion, we lead the students to the role of randomness in searching decisions.
From this, a probabilistic derivation follows naturally, and then to the continuous time
system and PDEs. Details of this derivation are presented below.

Once the basic mathematical framework is available, more directed discussion gets the
class to study small animals either swimming or crawling. The fundamental biological
assumptions in a diffusion model (e.g., no individual interactions, no effect of external
environment) are elicited from the students and considered in the context of choosing an
experimental organism and protocols. We introduce the brine shrimp and their biology,
and discuss experimental objectives and constraints imposed by available materials and
space. Biological and experimental details are presented below. Depending on the timing
of class periods, it can be profitable to have these discussions in a class period before
the experiments are performed, allowing students more input into variations of the basic
experimental design.

Students must revisit the mathematical model describing diffusion and discuss how
essential parameters will be estimated given available protocols. Generally speaking, the
easiest way to do this is by observations of individual movement trajectories and analysis
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of mean-squared displacements; details on why this works and how students can be math-
ematically responsible for regression are presented below. However, this is not nearly the
only way to arrive at diffusion parameters. Presenting parameterization as a problem to
be solved by the group is essential to student involvement, and in our experience also
essential to student internalization of mathematical concepts. The issue of numbers of
replicates and the role of sensitivity analysis should be discussed at this point, also; a for-
mal sensitivity analysis is presented below to provide a context that will allow instructors
to usefully guide this discussion.

The project follows the two basic steps of all mathematical biosciences: parameteriza-
tion and validation/falsification. Here, we present the most common form that the brine
shrimp diffusion project takes; (1) students follow individual shrimp and record positions
and times to estimate a diffusion coefficient D, and (2) students count numbers of shrimp
in regions over time for comparison with analytic predictions. All students do both activ-
ities in small groups; sizes of groups are discussed below. If preparations are limited, it is
possible for some groups to do (2) before (1), but all students should do both. We generally
frame the entire project as a question, “Do brine shrimp move randomly?”” and present the
mathematical framework for population predictions as a consequence of random motion
as a “null” model which students may or may not choose to reject.

2.1. Mathematical methods

At a population level, what are the consequences of assuming that shrimp move com-
pletely at random? What follows is a summary of the mathematical background needed
for investigating diffusive aspects of brine shrimp movement. A lattice version of random
movement, leading to the diffusion model, is presented and discussed pedagogically. Lec-
ture notes are provided for solution behavior and linear regression for finding diffusion
constants (as well as many other parameters in the rest of AMB). For model validation,
we develop diffusion predictions for an initial point release of shrimp, and summarize
the appropriate sensitivity coefficients for parameters in the point release model to give
instructors a notion of where student measurement efforts may be most fruitfully focused.

2.1.1. Derivation of diffusion equation

There are many ways to derive the diffusion equation. In advanced engineering and math-
ematics classes, a flux-based derivation is often used. A difficulty with the flux-based
derivation is that it depends on a number of relatively advanced mathematical concepts
for both particular steps and general understanding. For example, the notion that gradi-
ents point directly uphill and, therefore, random motion will, on average, create a flux of
individuals downhill (parallel to the negative gradient) often loses students. Applying the
divergence theorem, to pass from fluxes through boundaries to divergence of flux inside
the area, may not be in the front of most students’ minds; only rarely do biology stu-
dents take multi-variable calculus. Consequently the flux-based derivation becomes one
of many slick, elegant presentations that students will accept, but may not understand. We
generally opt for a more constructive approach, based on random walks.

Imagine space partitioned into a grid of (small) rectangles of width Ax and
breadth Ay. Let N(x, y,t) denote the number of individuals in the rectangle centered
at the point (x, y) at time ¢. Suppose that during each step of time, At, individuals in each
box choose to move either left or right, either forward or backward, with no bias. We ask
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students then to predict the number of individuals at (x, y) one step in the future. After
some discussion, they realize that individuals will all have come from directly neighbor-
ing cells in a “4-” pattern, each of those neighbors contributing on average one quarter of
the individuals originally resident. Thus,

1
N(x,y, t+ At) = Z[N(x —Ax,y, )+ N(x + Ax, y,1)
+ N,y — Ay, )+ N(x,y+ Ay, 1)]. (1)

It is important to connect with densities (P measured in organisms/area), so that num-
bers of organisms in arbitrary areas can be analyzed. For suitably small rectangles,
N = P AxAy, with the degree of the approximation improving as the rectangles become
smaller. Then (1) holds for the density function, substituting N = P Ax Ay and canceling
terms.

We seek an equation which holds at a single (x, y, f) location. Accordingly, we expand
P (legitimately a smooth function, unlike N) in a Taylor series,

1
P(x+Ax,y,t)=P(x,y,t) £ AxP, + EAxZP” +oee,

1
Px,y£Ay,t)=P(x,y,t) EAyP, + EAszyy + .-,

P(x,y,t+At)=P(x,y,t) £ AtP, +---,

where we have adopted subscript notation for partial derivatives and all functions are
evaluated at (x, y, t). Substituting into (1) gives

P, y, 1)+ AtP +---

1 1 1
= Z[P(x, v, 1) + Ax P, + Eszp” +P(x,y,1)— AxP, + EszP“

1 1
+ P(x,y,1)+ AyP, + EAszyy + P(x,y,1) — AyP, + EAsz),y +- ]
Students get excited canceling the obvious terms, leading to
1 2 2
AtP = Z[Ax P+ AY* Py ]+
If Ax = Ay (that is, movement is isotropic, or step size is equal in both directions) and

we take the distinguished limit Az, Ax, Ay — 0 while D = Axtiay?

1A is held constant, we
arrive at the diffusion equation

P = D[Py, +Pyy]~ (2)

For future reference, note that the diffusion constant can be interpreted

4At 4 . Time to Move That Far

D Ax?+ Ay*  Mean Squared Distance Moved



238 Kohler et al.

This derivation, in our experience, invites student discussion and participation and is also
amenable to experimentation—students can put a pile of coins in the center of a square
grid and start flipping each coin (twice) and moving it left, right, up, or down as indicated.
A few iterations convey the behavior of the diffusion equation.

2.1.2. Solutions and behavior
At this point we generally exhibit a solution for discussion,

1 :

P(x,y,t)= 471Dte ar . 3)
This is the fundamental solution, which is found using similarity and transform methods
in PDE and applied mathematics classes. In a multivariate calculus setting, this solution is
often given as an applied example in partial differentiation and the utility of higher partial
derivatives (e.g., testing to see that (3) is actually a solution to the diffusion equation).
In all classes, we discuss behavior of the solution, including convergence to the delta
function as time tends to zero and what this means from an observational and biological
perspective. We also make some connection with the statistical background. Since (3) can
be viewed as the product of two normal distributions for independent x, y variables,

1 242 1 21 >
4Dt Dt

e~ 4D = e e s
4m Dt V4 Dt V4m Dt

each with variance o2 = 2Dt, the variance of sums of squares of these variables is addi-
tive,

=

IS

E(x2+y2) =024+02=4Dz. 4)

This means that the characteristic area covered by the population profile grows linearly
with time, while the peak density decreases inversely with time.

2.1.3. Regression to find diffusion constants

Discussion of population variance following point release is important not only because it
increases understanding of solution behavior, but also because this provides an avenue by
which researchers estimate D for real populations (Turchin, 1998). Since the expectation
of squared distances increases linearly (4), it follows that if squared displacements of sev-
eral individuals are averaged and observations of mean squared displacement are plotted
in time they should produce a line with slope 4D passing through the origin. Students
must have a method to determine the most likely slope from imperfect data—a special
case of linear regression. Students at many levels can benefit from a discussion of regres-
sion with general linear models, and its basis in linear algebra, in order to figure out the
slope of a regression line passing through the origin. Most linear algebra books, and most
linear algebra and basic statistics classes, seem to skip over this crucial piece of mathe-
matical technology, so we present the approach in detail, following the discussion given
in Lay (2003).

Generally, if a model

x=ayfi(t) +ay fo(t) + -+ @ fu (1)
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is to be fit to data {(z;, x;)}_;, then the system of equations
xj=a1 f1(t;)) +ax fo(t;) + -+ am fin(t))

must be solved for the coefficients a;. The system can be written in matrix form
X =Fa,

where X is the vector of observations, a is the vector of coefficients, and F is called the
design matrix with rows (i) given as the individual model functions evaluated at #; (f;(t;)).
The system is overdetermined when n > m, and so solutions normally only exist in the
least squares sense. Following Lay (2003), the system

F'Y¥ = (F'F)a

is the orthogonal projection of these equations onto the space spanned by the model func-
tions; therefore,

a=(F'F) 'F'x

is the “best” solution in the least-squares sense. The matrix (FTF)~!'FT is called the
pseudo-inverse. (Just a note for mathematicians—correlations among the model func-
tions across #; appear as near collinearity of columns in the design matrix, which leads to
poor conditioning in the inverse.) We generally spend a lecture and a computer lab on this
subject in the AMB class since determining parameters from experimental data is proba-
bly the single most important technical proficiency required for biomathematics students.
Students are encouraged to write MATLAB scripts that implement their own understand-
ing of the algorithms needed for their analysis. Some use built-in functions in MATLAB
or Excel spreadsheets, but they usually require tweaking to force a line through zero. Most
mathematics students, even those with advanced linear algebra experience, have not seen
the connection between projections, least squares solutions, pseudo-inverses, regression,
and parameter estimation, so this content is invariably an eye-opener. We have found that
students benefit from heterogeneous groups in which at least one member comfortably
can write and execute simple programs.
In the case of fitting a line with intercept at the origin, the design matrix is a vector,

F=(,0,....1,)",
so the slope is just

. (it ) (e )T
a) = T ®
(1, 02y ) (1 By ey B)

where the r; are mean squared displacements at time ;.

2.1.4. Arrival predictions for validation

An overall theme in AMB is validation/falsification of parameterized models in the arena
of independent experiments. Ideally students construct the validation experiments them-
selves, often on the basis of situations we have discussed in class. One example involves
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release of a population and then subsequent observation to determine whether dispersal
assumes a Gaussian profile, but typically this involves a /ot of counting and it is difficult to
count rapidly enough to capture an accurate snapshot of the spatio-temporal process. An-
other example is observations of arrival density in a small target area following a “point”
introduction, simulating arrival of exotic or diseased populations in a conservation area
at some distance from an initial introduction. This is pedagogically interesting, since it
can be attached to a variety of stories (e.g., at what rate should national park managers
expect arrival of deer with chronic wasting disease if the park is some distance from a
point source of infection) and leads to a good discussion of pulse behavior in the diffu-
sion equation. Will there (can there?) be a maximum in the number arriving? If so, when
should it be expected and how long until it fades away? These questions can be illumi-
nated by considering the asymptotic cases: at time zero, there should be no arrivals, and as
time goes on to eternity the population should become evenly dispersed at low density (or
zero density in an infinite space). Somewhere in between then must be a maximum rate
of arrival (which can lead to more discussion in a PDE context, since diffusion solutions
can have no internal extrema).

A little preliminary experimentation reveals that “point” release of a population is im-
possible. Via either discussion (beginning with the statistical nature of the diffusion solu-
tion and estimating the variance of shrimp following point release) or instructor revelation
we introduce an extension of (3),

No 3

P(r1) = _2(og+2Dt)’ 5
"D = o2 +201) ©)

where oy characterizes the spatial extent of the initial release and N, is the number of
individuals released. The predicted number of individuals in a counting area, A, would be

N, B pLy —__r*
Na() =// P(r,t)dA = —0/ / e 20G+2Dn %drd@,
A 271' o Ly UO —+ 2D[

where A is an annular region contained between the angles o and 8 with L; <r < L,.
The substitution

r2

UH—=————-
2(of +2Dt)
gives

2 2
Ly L

Na(t) = Ny ,32;01 [6‘7 207 +2D1) _ 672(Ug+2Dt) ] (6)

Alternatively, the prediction

__1?
e 2ag+2D1) 7)

NoA

Na(t) ~ NoP(L, 1) = ——
408~ NoP (L, 1) 27 (og + 2Dt)

is reasonable for a class that is not up to the double integration, provided the radial extent
of the area A is small. An interesting problem for more advanced students is to determine
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the order of accuracy of the approximation. Letting L; = L — A and L, = L 4+ A in (6),

(L-n)2 (L+4a)2
B—oap - 2(02+2D1) " 2(02+2D1)
[e 0 —e 0 ]
2

B—a  d it 2
o ZAE[—e 0720+ 0(A?%)
p—a =

“N—PT* oA " 202 +2D1) +0(AY).
“2mez+2Dn) ¢ (%)

Na= Ny

:NO

Since the annular region has area,

B—a
A= o m[(L+A)? —(L—A)?]=2(B—a)LA
we have
NoA R
Na(t) = 0 e 2(o+2D1) + O(Az),

27 (0 +2D1)

giving the accuracy of (7).

2.1.5. Sensitivity analysis

Students soon realize that, in addition to their estimate of D, model validation requires
measurements of Ny, L, and oy, each of which is likely to have some error attached. These
errors are important to understand for both the students and for the instructors, since they
give some notion of where to place experimental emphasis and what may cause divergence
of results. A good exercise in multivariate calculus is to determine the relative sensitivity

of (7) using the linear approximation

ANA ~ D BNA AD [of4} 8NA AO’Q L aNA AL

Ni. NooD D ' Ny ooy oo « N, oL L
—— —— ——

€D €g €
where the sensitivity coefficients are

Dt (—L?* 4202 + 4Dr1)

0= ©2+2D0?
05 (L* —2(05 4+2D1))
o (0@ +2D1)?
L2
€, = and ey =1.

_002+2Dt’

EBNA ANy ®)
Ny ONy Ny’
—_——
€N
©))
(10)
an

We suggest that students include such a sensitivity analysis in their lab reports along
with an interpretation of the numerical values of these coefficients based on their exper-
imentally determined parameters, as these results have implications for the design of the
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validation procedure. (Our results are reported in Section 3 and Figs. 9 and 10.) While
many other mathematical extensions of this lab project are possible, we proceed now with
the necessary biological background.

2.2. Biological methods

Although any small crustacean would serve for this exercise, those from the group of
brine or fairy shrimp (family Anostraca) are readily available. We have successfully used
Artemia franciscana (Crustacea, Branchiopoda) native to the Great Salt Lake (GSL), and
the San Francisco Bay (USGS, 2009) (Fig. 1). Brine shrimp are collectively known as
“Sea Monkeys”. Below, we briefly describe their natural history and procedures for hatch-
ing and raising them to a size appropriate for this exercise. Additional information is
available online as described in Appendix A.

2.2.1. Natural history

As their common name suggests, brine shrimp are adapted to high saline conditions and
A. franciscana survives well in the GSL whose salinity ranges from 12-27% (seawater
is 3.5%). Adults are approximately 10 mm long and feed primarily on GSL algae such
as the flagellate Dunaliella viridis, but the species varies with season. Reproduction in A.
franciscana is sexual with either live birth of first instar nauplii (i.e., first larval stage) or
the production of cysts that are capable of prolonged diapause. The cysts are the “eggs”
one buys in pet stores. Optimal reproduction in A. franciscana occurs at 14—17% salinity,
which in the GSL occurs in the south arm of the lake where persistent winds drive adults
and floating cysts toward freshwater inflows and reduced salinity. The life span of a typical
female is 69 months and she can produce about 8 broods per year. Once born or hatched,
15-16 molts by nauplii are required for maturity. These life history details will depend
on the particular local environmental conditions and the species. Additional life history
information is available from resources listed in Appendix A.

Fig. 1 Second instar nauplius of Artemia franciscana. The animal is about 1.5 mm in length. Photograph
by Kevin Johnson was downloaded from http://ut.water.usgs.gov/shrimp/ accessed October 22, 2008. Used
with permission.
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Plastic Wrap ’ﬁ‘ Support beaker/glass

Baking dish —J K Water level

Fig. 2 Diagram of the baking dish set up used to hatch brine shrimp. The support beaker prevents the
plastic wrap from collapsing on the saline water and shrimp.

2.2.2. Hatching the shrimp from cysts

The easiest method of obtaining the appropriate size class of brine shrimp nauplii for this
laboratory exercise is to hatch the shrimp from commercially available cysts. Optimal
hatching success of A. franciscana occurs in actual GSL water diluted to about 1/3 of
original salinity (c. 6-10%). In the absence of the real thing, InstantOcean®, at appropriate
concentration, has a proper balance of ions. If neither is available, hatching will occur in
a solution of 60 g/liter of table salt and tap water that has been exposed to the air for 3
days (to “de-gas” and remove fluoride and chlorine).

In a common household 9% 13 inch (23 x33 cm) baking dish (preferably glass), add
about 1 inch (2.5 cm) of salt water and pour the cysts onto the surface so that about 1/2
to 1/3 of the surface is covered with the brown cysts. Cover the dish with plastic kitchen
wrap to prevent evaporation, using a small beaker or juice glass for support (Fig. 2). Early
instar nauplii are delicate and undue turbulence can increase mortality so that aeration
by atmospheric diffusion alone is best. Very gentle aeration with an aquarium bubbler
pump and stone is possible, but avoid too much turbulence. Expect about 50% hatching
success. The dish can be left at room temperature in typical office ambient light intensities
and cycles. No other incubation equipment is needed. Allow 3 days to obtain sufficient
numbers for this exercise.

The experiment uses second nauplii shrimp which is the first feeding stage. A food
source is not needed if the animals are used soon after hatching, but if you wish to keep
them alive longer than a few days or attempt to grow them through additional nauplii
stages, they are able to feed on bread yeast cells. Because brine shrimp adults are easily
viewed with the unaided eye, have elaborate, beautiful anatomy, and interact with each
other in small containers (especially males and females), the affective domain of learning
(Table 1) can be addressed by providing students the opportunity to simply observe adults
and nauplii in small containers. If dissecting microscopes or an overhead projector are
available, this experience is greatly enhanced.

2.2.3. Items needed for the labs
The required materials for both lab procedures are:

1. A supply of second nauplius brine shrimp larvae (other members of the family Anos-
traca can be used).

2. Blunt, wide-aperture pipettes (plastic pipettes cut to an aperture of about 3—5 mm are
best), 3 per group.

3. 150 mm by 15-20 mm deep Petri dishes, 2 per group (glass preferred or free of
scratches if plastic).
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(a) (b)

Fig. 3 Transparencies needed to measure shrimp movement (not actual size). (a) a grid for recording
individual shrimp movement, (b) circles for measuring arrival densities. The URL for actual size templates
is listed in Appendix A.

Overhead transparency gridded with x-y coordinates (see Fig. 3(a)), 1 per group.
Overhead transparency marked in concentric circles (see Fig. 3(b)), 1 per group.
Small custard dishes or Petri dishes for transferring, 2 per group.
Overhead projector (ideally, 1 per group) or a light box or a multimedia projector that
displays flat surfaces.

8. Stop watch or timer accurate to seconds, 1 per group.

9. (Optional) Video camera on a tripod to record movements.
10. (Optional) Adults for behavioral observation and student motivation.

Nown A

Appendix A lists further references and websites with resources pertaining to this exer-
cise.

2.2.4. Individual movement procedure

Before the exercise begins, the dish of second instar nauplii should be brought into the
classroom and covered with foil, leaving one corner exposed. A bright light shined on
the exposed corner will cause the shrimp to congregate so that high concentrations can
be extracted for the arrival densities experiment. A dense cloud of organisms will form in
30-60 minutes.

To observe and record individual shrimp movement, the bottom of a Petri dish should
be barely covered with salt water of the same salinity as that used to incubate the cysts.
Place the gridded transparency (Fig. 3(a)) on the overhead projector and the dish on top
of that centered on the origin of the grid. Use a pipette to deposit a small drop containing
only a few shrimp. If neither a projector nor light box is available shine a small desk lamp
obliquely on the Petri dish. Be aware that the shrimp are positively phototactic and will
be attracted to the light.

After the shrimp are added to the Petri dish, one student times and records positions
while the other calls out the x and y coordinates for an individual shrimp for as long as
possible, at 5 or 10 second intervals (quicker is better but also more difficult; see Results
below). When the shrimp nears the edge of the dish, observation should cease. This is
repeated for 6-10 shrimp. The more shrimp and the longer the time traces, the better the
estimates of D (see Section 3.1 below). Best results seem to be obtained by following
a shrimp starting at the center of the Petri dish for 60-90 seconds. Old style overhead
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Fig. 4 Digital still images showing release and dispersal of shrimp within 10 seconds of the arrival densi-
ties procedure. The Petri dish image projected via overhead projector is approximately 5 feet in diameter.
Individual shrimp, appearing as specks in these images, are easy to detect in part due to their movement.

projectors produce heat which will affect movement rates, so restarting the experiment
with new water and shrimp every 5-8 minutes is advisable. This is not a problem if you
are using a video camera connected to a classroom digital projector.

2.2.5. Arrival densities procedure

As discussed above, this validation experiment simulates arrival in a spatial area after
point release of invaders. Again, add salt water to barely cover a Petri dish; center the dish
on top of the transparency with concentric rings (Fig. 3(b)) on the overhead projector.
Use the pipette to extract a dense sample from the culture dish. Being careful to acquire
as little water as possible, use the pipette to withdraw about 2—-3 ml of shrimp culture.

Count accuracy is improved if an overhead projector is used to project the image on
a wall. If a video camera is being used, start the camera. Carefully deposit the contents
of the pipette in the center of the arena (Fig. 4). When releasing the shrimp, the pipette
should be held vertically so as to minimize advective bias in the initial conditions. The
student timer should note and record the area that the initial placement of shrimp occupies,
by estimating the approximate radius of the population after release. This is an important
parameter in the model (002 above).

We have found that a group of 5 students is optimal. One student times the intervals
between counts (10 seconds) and records the values reported verbally by 4 student ob-
servers. Each student is assigned one region of the grid and reports the number of shrimp
in the region when commanded by the timer. We repeat the observations at least twice
using 4 regions equally near to the center of the grid and, in a separate experiment, 4
regions farther from the center. The near region should be outside the zone of the initial
conditions, and the far region should not be too near the wall of the Petri dish. Students
will want to design the experiment to last long enough to distinguish the projected pulse;
in our experiments we continued for 2 to 3 minutes.

2.3. Assessment strategies
Due to the interactive nature of project-based learning, continual assessment of student

learning is required to guide instructional strategies. For formative assessment, we listen
carefully to student contributions during class discussions. Ideas offered by students are
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frequently incorporated into our presentation of new information; we ask many leading,
open-ended questions to ensure that central ideas are eventually articulated by students
and based on their individual experiences. During the class period, it is important for
the instructors to circulate to the various groups, listen to questions raised, and problem-
solving strategies. Generally, this is not passive; carefully framed questions and observa-
tions keep students engaged and facilitate their nascent ideas. We require a project from
small groups containing a mix of biologists and mathematicians. We observe both intra-
group learning (mainly math students teaching biologists) and intergroup learning, since
we require on-going progress reports for the entire class. This presents students with al-
ternative approaches to the same problem. When time permits, the whole class shares and
discusses approaches to problems arising in data collection or model evaluation.

The target question, “How much like a random walk is the brine shrimp movement?”
forces students to synthesize their understanding of the diffusion model in a written report.
Individual or group reports are checked for mathematical accuracy to see that students
have made true statements, correct calculations, and performed appropriate algorithms.
Work is also evaluated for appropriate incorporation of mathematical equations and ex-
pressions as well as data and plots into a narrative that relays an acceptable understand-
ing of the model and its applicability in the particular case of our experimental set-up.
These latter aspects of mathematical writing are introduced not only in the diffusion lab;
throughout the course, students prepare reports to hone their written communication tal-
ents.

3. Results

There are three flavors of results achieved using the brine shrimp diffusion experiment.
First, there are estimates of diffusion constants and comparisons of arrival observations
with predictions from both our students and ourselves. We present results both from our
students’ labs in Spring, 2008 as well as results obtained by the authors in Summer, 2008
to give potential instructors some feeling for what to expect from student results. Second,
our analysis of the experiment is presented to help instructors evaluate, interpret, and an-
ticipate student results, but not necessarily as a model of student results. There are proce-
dural results to present as well; during our Summer experiments, we performed extensive
videotaping of experiments so that we could ascertain the degree of error produced by
human observation and also to provide a sufficiently extensive data set that bootstrapping
would reveal the distribution of parameter results. The purpose of this is not to suggest
that videotaping is a more effective way to collect data (although it is), but rather to re-
assure potential instructors that direct observation (which thoroughly engages students in
a way that videotaped data does not) is “good enough.” Third, there are the qualitative
student responses to the lab, based on observations and reflections on what students have
gained from this activity.

3.1. Estimation of diffusion constant
Figure 5 depicts observed mean squared displacements of 12 shrimp sampled at both 5

and 10 second intervals. Several different slopes can be determined depending on the
length of the data set considered. This is a good example of the real world of messy data
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Fig. 5 The mean squared displacements for shrimp movement are shown above when data were collected
at 5 and 10 second intervals. Each point represents the average of roughly 12 shrimp.

that students must confront. To determine how often the position of each shrimp should be
recorded during the individual movement procedure, Fig. 5 shows the effects of collecting
data every 5 seconds and every 10 seconds on the estimate of the diffusion constant, D.
We conclude that the time interval used does not have a large effect on the estimate of
D, and the appropriate time interval should be determined based upon the ability of the
students conducting the data collection. In both our and our students’ experience, the use
of 5-second intervals is about the limit sustainable for calling out and recording positions,
but excitement is maintained; the use of 10-second intervals is very easy to keep up with,
but the time spacing begins to feel tedious because not enough is happening.

A second experimental design constraint is the length of time that students should
follow an individual shrimp. As mentioned in Section 2.2.4, observation of an individual
shrimp should cease when it comes in contact with the edge, as its movement can no
longer be considered random. However, each shrimp will hit the edge after a different
length of time, and accordingly longer data tracks will begin sampling only slower shrimp.
Figure 6 shows the effect of the total length of data collection on the estimate of D. We
conclude that 80 to 90 seconds is an appropriate length of time to record the positions of
shrimp that do not contact the edge before that point. In taking a large number of data
samples, we have found that approximately 75% of the data tracks for individual shrimp
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Table 2 Results of bootstrapping the data collected from the students in the class, and from our own
experiment in real time and the video recording. Samples of size N were randomly selected from the total
tracks collected. The mean diffusion coefficient D and standard deviation (in cm? /s) were computed from
repeated randomly selected samples

For video data:

N 10 20 30 40 all 43
mean D 0.0250 0.0250 0.0250 0.0250 0.0250
SD D 0.00721 0.00499 0.00410 0.00348

For class data:

N 15 20 30 40 50 all 52
mean D 0.0413 0.0414 0.0412 0.0412 0.0414 0.0413
SD D 0.0113 0.00995 0.00794 0.00693 0.00623

For the original real time data we collected:

N 10 15 all 19
mean D 0.0298 0.0299 0.0299
SD D 0.0101 0.00830

For the class data and the data we collected:

N 10 20 30 40 50 all 71
mean D 0.0378 0.0379 0.0378 0.0377 0.0378 0.0378
SD D 0.0113 0.00934 0.00767 0.00655 0.00592

displacement will contain information for up to 90 seconds and results seem fairly stable
up to that time.

The last experimental design consideration is the number of data tracks, N, required to
produce reasonable results. Through bootstrapping both the real-time data and the video
data, we obtained the results shown in Table 2. Results vary between class and author
data due to variance in experimental conditions; experiments were performed in different
rooms, at differing temperatures and light conditions, with shrimp of different broods,
leading to diffusion constants almost twice as large. With only 10 observations, the stan-
dard deviation of estimates hovers around 28% and decreases inversely with +/N. Hence,
at 40 observations, the standard deviation is approximately 14% of the estimate of D.
Statisticians would no doubt tell us that N should be much larger; on the other hand, to
get the standard deviation down to 10% would require on the order of 80 observations
(282/10% =~ 7.8). As discussed below, sensitivity of the validation experiment to D is
relatively low. Since 10 observations require 15-20 minutes, a reasonable goal given suf-
ficient class time, would be 20 observations with an anticipated error of 20% in estimates
of D.

3.2. Arrival densities procedure

Both students and the authors observed arrival numbers in two counting areas (near and
far, L = 1.83 cm and 3.65 cm, respectively). The goal of the experiment is to determine
whether or not brine shrimp are following a direct prediction of the diffusion model.



Leading Students to Investigate Diffusion as a Model of Brine 249

D Values vs. Length of Data Collection
0.04 T T T T

0.035- h

0.03F * * R

D (cmzlsec)
o
o
N
(4]
T
*
1

0.02 * —

0.015} *og

0.01 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

Time (sec)

Fig. 6 The estimated diffusion coefficients are pictured as a function of the duration of data collection. The
points are computed from approximately 12 shrimp in the first 100 seconds, but data became unavailable
as shrimp hit the edges of the dish so points after 100 seconds arise from averages of 11 down to 3 shrimp.

Students immediately realize that D is not the only parameter required; while other pa-
rameters come from direct measurement, the total number of shrimp released, Ny, must
be determined directly by counting. We compared direct counts with stop-action counts
of video data to ascertain the error in human counting. Using our real-time data, Ny was
calculated with a 3% error and 15% error in the two separate trials when compared to
exact counts from the video recordings. Typically, real-time numbers were lower than
numbers found when using the videotaped data, but since the sensitivity of the predic-
tions to error in Ny is direct, these errors are relatively trivial from the standpoint of
validation/falsification.

Figure 7 shows the arrival of shrimp at two different regions for both student real-time
data and numbers gathered from a video recording of the same trials. This figure indi-
cates that counting at arrival areas is unlikely to be the source of variability; the arrival
process itself is inherently stochastic and counting error seems to contribute little to over-
all variability. Figure 8 shows observed shrimp arrivals with the predicted arrivals based
on the diffusion model. The figure shows that variability in counts at the arrival area is
obviously high, of the same order as the expected number. Most students, in fact, looking
at the raw data, are convinced that the diffusion model is a failure and that there is no
clear pulse of arrival. However, when they plot model predictions their perceptions re-
organize. As often happens, inflicting a predicted curve on observational data brings out
elements of the global behavior which might otherwise be missed. The variability makes
it difficult to definitively validate the diffusion model (particularly given its sensitivity to
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Fig. 7 Pictured above is the number of shrimp counted in each region from our visual inspection in the
arrival densities procedure for near (top) and far (bottom) areas. We compare this to the more careful
method of counting shrimp in still images of the video recorded data.
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real time (left panels) and video taped (right panels) data. Symbols are data, solid line are prediction from
Eq. (7). Error bars are 1 standard deviation.
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the measurements, see below), but the model’s ability to organize the overall behavior of
the observations makes it difficult to falsify as well.

3.3. Parameter sensitivities

To assess elements of the experimental protocol, we performed a sensitivity analysis on
selected parameters. For nominal measurements of L = 1.4 cm, 0o = 0.5 cm, D =2.6 X
1072 cm?/s, the peak of the arrival pulse occurs at ¢ ~ 134.3 s, at which time, from
Egs. (9-11), the elasticities are

ep=0.11, €, =0.01, €, =—2.23.

Recalling that ey = 1 (Eq. (11)), we see that accuracy at the pulse is more than twice
as sensitive to measurement of L as measurements of Ny. A 5% error in estimating the
population size will create a 5% error in measurements of population at the peak of the
pulse; a 5% error in estimating L produces an 11% error. Measurements at the pulse will
be relatively insensitive to errors in either D or o. Earlier (e.g., t = 15)

ep=4.17, €; =3.18, €, =—135.

While only a small fraction of the population will have arrived at this time, this indicates
that measurements of the initial ramp of the pulse may be very sensitive to parametric
error, particularly in measurements of L. Figures 9 and 10 show the sensitivity of the
model to changes in the parameters over the entire length of data collection. We discuss
these kinds of results in class in the context of experimental design. For example, “If we
were to repeat the experiment, how would you change the observational techniques?” Or,
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Fig. 9 The parameter sensitivity coefficients from Eqs. (9-11) are shown. The parameter values for
L=14cm, 0p=05cm, D=2.6x 1072 cmz/s are used as a base measures in the expressions for
each coefficient.
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Fig. 10 The predicted arrivals from Eq. (7) are plotted here for 10% variations in each parameter to show
sensitivity to parameters.

these discussions can profitably occur before the students collect data. For the instructor’s
benefit, designing an arrival area with L = 2 cm is probably optimal for balancing the
desire for a clear peak relatively, but not too early (as opposed to the broad, flat peak
illustrated on the right-hand side of Fig. 8) and low sensitivity to measurement errors.

3.4. Evaluation of student learning

Ultimately, the success of the lab lies in its value as a pedagogical experience for stu-
dents. Our evaluation of what students have learned from this activity comes from our
observations during the course, student reports on the project, and emailed reflection
questionnaires received from the course instructors and recent students. According to the
instructors” documentation, student progress was clearly evident from initial discussions
in class, the tenor of group discussions during experiments, questions posed during office
hours, and the final lab write-up, which was generally quite professional. From this, we
are convinced students achieve a wide array of learning objectives, some of which are
tabulated in Column 3 of Table 1. Students not only gain a basic understanding of the
model and topic, but they display a diversity of cognitive engagement and performance—
exhibiting remarkable achievement of discovery, application, creative thinking, appre-
ciation, and willingness-to-try learning objectives. These types of objectives are rarely
reached through lecture alone.

To illustrate what students acquire through this exercise, we include a few excerpts
from their reports. Showing a general understanding of random walks, one student writes,
“In a two-dimensional world, there are only two ways that the brine shrimp or any other
organism can move. After they make a move they may reorient and make another move-
ment at random.” Students make graphs displaying mean squared distance as a function
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of time and display their linear regression results (similar to Fig. 5). One report states,
“The resulting averages of distance moved from the origin show shrimp disperse from the
origin at a dependable rate. The slope of the trend line allows us to state the predicted
diffusion constant for shrimp.” Some students report a great deal of detail about their
validation experimental design and include tables of raw data as well as graphs to illus-
trate their conclusions, while others more briefly summarize methodology and incorporate
graphs of their recorded data compared to model predictions (similar to Fig. 8). Two main
deficiencies that continually arise in student reports during this course are: (1) intelligent
and well-formed writing that surrounds the equations, and (2) figure and table captions.
Instructors were initially surprised at the number of students who either do not read or do
not conform to writing standards in journal articles. To teach writing skills, they collect
preliminary versions of reports and give detailed feedback before the final product is due.

Whether or not students’ results align squarely with the diffusion model, they demon-
strate their analytical thinking through the process and interpretation. Realizing the impor-
tance of precise experimental technique and accuracy of calculations, one student reports,
“It is possible that errors were made during the experiments or in the calculation of the
diffusion constant that made for the incongruity. It is also possible (although I checked
and rechecked it) that the diffusion equation predictions were not computed correctly.”

The project naturally leads students to raise mathematically and scientifically impor-
tant issues. For example, students discussed the effect of a no-flux boundary (the edge of
the Petri dish) and raised concern about trying to balance where “removing outliers” be-
comes “misrepresenting data.” One student included a paired T-test, with the pairs of the
test being the times at the observed and predicted values, and concluded that the model and
data are significantly different from one another. To explain this discrepancy, she wrote,
“The diffusion equation may not have worked to predict the movement of brine shrimp
because the shrimp were moving around in circles. Maybe if we would have collected
data for areas closer to the center we would have gotten better results.”

Students notice that at small scales the shrimp movement is clearly correlated with
past direction and speed, but on larger scales where they are pointing and where they
are going seems pretty random compared to what they were doing 5-10 minutes prior.
Hence, students think a lot about whether the basic premise of the model is satisfied or
not, and what not satisfying the premise might mean. Another student concludes, “Shrimp
do follow the diffusion model, but are prone to exhibiting a more organic unpredictability
of location. They seem to find a comfortable distance of dispersion and then stagnate to
forage.”

The challenges and rewards of using personally collected data from living creatures
helps students gain a deeper appreciation for the process of fitting and evaluating a math-
ematical model. Students reported they enjoyed learning through the hands-on labs and
collaboration with peers and instructors. They also gained confidence, initially bewildered
by the notion of describing population dispersal mathematically, then amazed they can
work with and understand a PDE. In the emailed reflection, one student wrote, “It was the
first time I had used collected data to parameterize a PDE model. I learned the difficulty
of adding a spatial element to a mathematical model.” Particularly, the math students ex-
pressed appreciation for the challenges of working with living organisms. “I learned that it
is hard to keep data collection consistent and accurate, especially when observing some-
thing that moves quickly and unpredictably like brine shrimp.” It is not surprising that
a large number of students who have taken this course have pursued research projects
outside of class in biomathematics.
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4. Discussion

The brine shrimp lab is an example of a project-based learning experience for students
that kindles interest in advanced mathematics and provides a vehicle for friendly collab-
oration among math, biology and math education faculty. We provide a summary of the
main teaching components and brief recommendations for implementation in Table 3. Our
experience confirms that in addition to being a tractable lab (without requiring sophisti-
cated equipment), the project is also mathematically reasonable as a vehicle for studying
the classical diffusion model, and consistent with reform efforts in improving mathemat-
ics instruction. The biological preparation is relatively simple, making it feasible to incor-
porate into classes in PDEs, vector calculus, mathematical modeling, advanced statistics
classes, and stochastic processes. Each of these specific classes would emphasize differ-
ent aspects of the exercise as appropriate to the subject matter. For example, a statistics
class might emphasize goodness-of-fit tests to a Gaussian distribution, a PDE class might
develop error terms to approximations to flux rates, or a class on stochastic processes

Table 3 Summary of the instructional procedures and our recommendations for implementation

Instructional Procedures

Recommendations

1. Derivation of the model Introduce the
derivation and solution of the diffusion equation
as a 2-dimensional random walk through lecture
and discussion. Lead students to the question of
the project, “Is diffusion a good model for brine
shrimp movement?” and begin a discussion of
appropriate experiments

2. Individual Movement Lab Allow students to
get comfortable with the equipment and handling
of the shrimp, also allow some flexibility in the
way they choose to collect data keeping the goals
of the procedure in mind

3. Regression Lecture on the mathematical
framework for fitting a line to the data gathered
during the individual movement lab. Introduce
and review required MATLAB commands as
students find their diffusion coefficients. Discuss
advantages of pooling the data and provide a way
for groups to share results

4. Model Validation Through discussion lead
students through the qualitative behavior
expected in the model for the arrival density
experiment. Also, present the mathematical
formulation. Conduct the arrival density lab to
collect data and estimate parameters

5. Follow up discussion and assessment Follow
up with a discussion of findings and clarify the
assigned report. Discuss the optional parameter
sensitivity analysis and other issues the
experiments raised to be addressed in the written
reports

Emphasize the construct-a-concept learning level
as students formulate an understanding of the
diffusion model. Also, be in tune with the level of
mathematical precision students use in their
communication. Throughout the exercise, guide
them toward using more mathematical language

Emphasize discover-a-relationship level learning.
Encourage students to make connections and
raise issues regarding the experimental procedure
and mathematics

Students practice applying the algorithms on their
own and check results with one another

Allow students to deductively reason through the
qualitative behavior and mathematics. Emphasize
the application learning level

Promote and reward divergent thinking. Follow
through on suggestions and ideas students raise
through their experience




Leading Students to Investigate Diffusion as a Model of Brine 255

might devote more attention to the interface of individual probabilistic events and average
stochastics of ensemble behavior.

A key component to the instructional effectiveness of this project is the classroom en-
vironment that fosters learning because of the communication and interaction style among
the professors and students. The fact that the course instructors consist of a genuine in-
terdisciplinary team, one from biology and one from mathematics, with a long productive
history as research collaborators, certainly provides students with an exemplary model.
Students might learn how to be a part of effective teams simply by observing the inter-
action style and cooperation between the instructors. However, this aspect of our imple-
mentation of the project is not a necessity. Another skillful instructor in tune with the
working styles and personalities of students in class can orchestrate an environment con-
ducive to effective teamwork. The instructors of the course employ a variety of strategies
for creating a community of inquiry in the discussions (compare with Goos, 2004), and
predominantly these strategies are realized through the communication style in the class.
By using descriptive language, and avoiding the typical Initiate—Response—Evaluate cy-
cles that dominate traditional classroom communication, the instructors create an environ-
ment in which students no longer fear but embrace failure and are invested in gathering
and interpreting experimental results (Cangelosi, 2003). The inherent uncertainty of a bi-
ological experiment puts students and faculty on equal footing for discussion as lectures
cannot. Hence, classroom discourse is enhanced since conversations arise addressing the
variability in the methodology and findings. Students engage in reasoning-level (rather
than memory-level) question-and-answer sessions throughout the project. Ideas offered
by students are valued, frequently followed, and not judged by the instructor.

Another essential component to the success of this project is the direct experience of
gathering data from living organisms. Presenting students with prepared, published, or hy-
pothetical data fails to engage them in scientific inquiry. Exploring computer simulations
of random walks can help involve students in conjecturing and inductive reasoning, yet the
simulation approach still greatly diminishes the investment and connection students feel
when working with real brine shrimp. Possibly, this is because we are deeply wired to try
to understand the motion of other agents in the real world, which “hooks” students. The
time and energy necessary to gather data gives students ownership and motivation. The
novelty of handling living things in a mathematical context inspires curiosity leading to
the creative examination of the relationship between diffusion solutions and observational
reality. Mathematics changes its meaning from an abstract logical game to a sense-making
language adding predictability to erratic situations.

There is a trade-off between the didactic and discovery nature of this project. The dis-
covery process takes time, is messy, inexact, and likely to be uncomfortable territory for
a didactic researcher/professor used to making polished presentations of carefully edited
essential information and choice examples. Especially at the start of a new unit of instruc-
tion, the initial biological question is vague: “Do guppies forage optimally? Do shrimp
move randomly?” These types of questions usually elicit long periods of silence. One has
to be careful that expert input is held until the class has had a chance to struggle. Less
information and mathematical knowledge will be delivered, but discovery-based teaching
involves students more directly in the activities of our profession. Our hope is that readers
will try this or similar exercises in their classes, enjoy the incorporation of project-based
learning in their own teaching, and that our efforts will save time in class preparation.
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Appendix A: Resources

An excellent source for many of the items needed is either a colleague from the local
biology department or:

Carolina Biological Supply Company
2700 York Road

Burlington, NC 27215
www.carolina.com

voice: 800-334-5551

The item references below are from CBSC Catalog 77, 2008.

1. 150 mm Petri dishes: local chemistry stores or CBSC (glass: item FA-74-1164,
plastic: FA-74-1254)

2. brine shrimp: local pet store or CBSC: hatching kit (everything needed in one pack-
age: eggs, pump, salt: FA-14-2214); eggs only: FA-14-2240; adults for optional
behavioral observation: FA-14-2230)

3. Large plastic pipettes: CBSC: FA-73-6988

4. Information on the GSL and brine shrimps:

http://ut.water.usgs.gov/shrimp/index.html
http://wildlife.utah.gov/gsl/brineshrimp/index.php
http://www.aquaculture.ugent.be/index.htm

5. PDF files for the templates can be downloaded from:
http://www.math.usu.edu/~kohler

6. A Java simulation of Artemia movement, growth, and reproduction:
http://www.captain.at/artemia-simulation.php

7. Webpage for “Applied Mathematics in Biology” USU Biol/Math 4230:
http://cc.usu.edu/~jhaefner/ AMBcourse.html

8. Additional laboratory exercises for biomathematics:

http://cc.usu.edu/~jhaefner/BioMathLab.html
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