Theorem. (Bolzano-Weierstrass)

Every bounded sequence has a convergent subsequence.
proof:
Let $\left\{w_{n}\right\}$ be a bounded sequence. Then, there exists an interval $\left[a_{1}, b_{1}\right]$ such that $a_{1} \leq w_{n} \leq b_{n}$ for all n.

Either $\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$ or $\left[\frac{a_{1}+b_{1}}{2}, b_{1}\right]$ contains infinitely many terms of $\left\{w_{n}\right\}$. That is, there exists infinitely many n in J such that a_{n} is in $\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$ or there exists infinitely many n in J such that a_{n} is in $\left[\frac{a_{1}+b_{1}}{2}, b_{1}\right]$. If $\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$ contains infinitely many terms of $\left\{w_{n}\right\}$, let $\left[a_{2}, b_{2}\right]=\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$. Otherwise, let $\left[a_{2}, b_{2}\right]=\left[\frac{a_{1}+b_{1}}{2}, b_{1}\right]$.

Either $\left[a_{2}, \frac{a_{2}+b_{2}}{2}\right]$ or $\left[\frac{a_{2}+b_{2}}{2}, b_{2}\right]$ contains infinitely many terms of $\left\{w_{n}\right\}$. If $\left[a_{2}, \frac{a_{2}+b_{2}}{2}\right]$ contains infinitely many terms of $\left\{w_{n}\right\}$, let $\left[a_{3}, b_{3}\right]=\left[a_{2}, \frac{a_{2}+b_{2}}{2}\right]$. Otherwise, let $\left[a_{3}, b_{3}\right]=\left[\frac{a_{2}+b_{2}}{2}, b_{2}\right]$. By mathematical induction, we can continue this construction and obtain a sequence of intervals $\left\{\left[\mathrm{a}_{n}, b_{n}\right]\right\}$ such that
$i)$ for each $n,\left[\mathrm{a}_{n}, b_{n}\right]$ contains infinitely many terms of $\left\{w_{n}\right\}$,
ii) for each n, $\left[\mathrm{a}_{n+1}, b_{n+1}\right] \subseteq\left[\mathrm{a}_{n}, b_{n}\right]$, and
iii) for each $n, \mathrm{~b}_{n+1}-a_{n+1}=\frac{1}{2} \cdot\left(b_{n}-a_{n}\right)$.

The nested intervals theorem implies that the intersection of all of the intervals [$\left.\mathrm{a}_{n}, b_{n}\right]$ is a single point w. We will now construct a subsequence of $\left\{w_{n}\right\}$ which will converge to w.

Since $\left[\mathrm{a}_{1}, b_{1}\right.$] contains infinitely many terms of $\left\{w_{n}\right\}$, there exists k_{1} in J such that $w_{k_{1}}$ is in $\left[\mathrm{a}_{1}, b_{1}\right]$. Since $\left[\mathrm{a}_{2}, b_{2}\right]$ contains infinitely many terms of $\left\{w_{n}\right\}$, there exists k_{2} in $J, k_{2}>k_{1}$, such that $w_{k_{2}}$ is in [a_{2}, b_{2}]. Since [a_{3}, b_{3}] contains infinitely many terms of $\left\{w_{n}\right\}$, there exists k_{3} in $J, k_{3}>k_{2}$, such that $w_{k_{3}}$ is in $\left[\mathrm{a}_{3}, b_{3}\right]$. Continuing this process by induction, we obtain a sequence $\left\{w_{k_{n}}\right\}$ such that $w_{k_{\mathrm{n}}}$ is in $\left[\mathrm{a}_{\mathrm{n}}, b_{\mathrm{n}}\right]$ for each n. The sequence $\left\{w_{k_{n}}\right\}$ is a subsequence of $\left\{w_{n}\right\}$ since $k_{\mathrm{n}+1}>k_{\mathrm{n}}$ for each n. Since $\quad \mathrm{a}_{n} \rightarrow w, \quad b_{n} \rightarrow w$, and $a_{n} \leq w_{n} \leq b_{n}$ for each n , the squeeze theorem implies that that $w_{k_{n}} \rightarrow w$.

