Chapter 9.2 Homework Answer

Exercises 1-7 Linear Systems Solve the system of equations by expressing it in terms of a matrix, and then complete row reduction to achieve echelon form.

1. $x-3 y=5$
$3 x+y=5$

Solution:

$\left[\begin{array}{rrr}1 & -3 & 5 \\ 3 & 1 & 5\end{array}\right] \quad$ Perform $(-3) R_{1}+R_{2} \rightarrow R_{2} .\left[\begin{array}{rrr}1 & -3 & 5 \\ 1 & 10 & -10\end{array}\right]$
From $R_{2}, 10 y=-10, y=-1$. From $R_{1}, x-3 y=5, x=3 y+5=3(-1)+5=2$. Therefore, the solution is given by $\mathrm{x}=2, \mathrm{y}=-1$.
2. $6 x-12 y=7$

$$
4 x-8 y=-5
$$

Solution:

Perform $2 R_{1} \rightarrow R_{1},(-3) R_{2} \rightarrow R_{2}$, and $R_{1}+R_{2} \rightarrow R_{2}:\left[\begin{array}{rrr}12 & -24 & 14 \\ 0 & 0 & 29\end{array}\right]$. From $R_{2}, 0 \cdot x+0 \cdot y=29$.
There are no numbers x , y that will satisfy this equation. The system is inconsistent.
3. $x+2 y+z=3$
$-3 x+4 z=5$
$-3 y+2 z=1$

Answer:

$$
x=\frac{3}{11}, y=\frac{7}{11}, z=\frac{16}{11}
$$

Solution:

In matrix form the given system becomes $\left[\begin{array}{rrrr}1 & 2 & 1 & 3 \\ -3 & 0 & 4 & 5 \\ 0 & -3 & 2 & 1\end{array}\right]$. Eliminate x in R_{2}.

$$
\left.\mathrm{R}_{2}+3 \mathrm{R}_{1} \rightarrow \mathrm{R}_{2}\left[\begin{array}{rrcc}
1 & 2 & 1 & 3 \\
0 & 6 & 7 & 14 \\
0 & -3 & 2 & 1
\end{array}\right] \underset{\substack{\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3} \\
2 \mathrm{R}_{2}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}}}{\substack{1 \\
0 \\
0}} \begin{array}{cccc}
-3 & 1 & 2 & 1 \\
0 & 0 & 11 & 16
\end{array}\right]
$$

Now by back-substitution we get $z=16 / 11, y=7 / 11$, and $x=3 / 11$.
4. $x+2 y+z=1$
$-2 x+y-2 z=-2$
$-x+8 y-z=2$

Solution:

In matrix form the given system becomes $\left[\begin{array}{rrrr}1 & 2 & 1 & 1 \\ -2 & 1 & -2 & -2 \\ -1 & 8 & -1 & 2\end{array}\right] .2 R_{1}+R_{2} \rightarrow R_{2} R_{1}+R_{3} \rightarrow R_{3}$ $\left[\begin{array}{cccc}1 & 2 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & 10 & 0 & 3\end{array}\right]$. From $R_{2}, 5 y=0$, and from $R_{3}, 10 y=3$. We get no solution since there is no number y that satisfies $5 \mathrm{y}=0$ and $10 \mathrm{y}=3$. The system is inconsistent.
5. $x+y+3 z=-1$

$$
\begin{aligned}
3 x-4 z & =-4 \\
-x+2 y+2 z & =2
\end{aligned}
$$

Answer:

$$
x=-\frac{4}{3}, y=\frac{1}{3}, z=0
$$

Solution:

In matrix form the given system becomes $\left[\begin{array}{rrrr}1 & 1 & 3 & -1 \\ 3 & 0 & -4 & -4 \\ -1 & 2 & 2 & 2\end{array}\right]$. Eliminate x from R_{2} and R_{3}.

$$
\underset{\substack{R_{2}-3 R_{2} \rightarrow R_{2} \\
R_{2}+R_{3} \rightarrow R_{3}}}{ }\left[\begin{array}{rrrr}
1 & 1 & 3 & -1 \\
0 & -3 & -13 & -1 \\
0 & 3 & 5 & 1
\end{array}\right] R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{rrrr}
1 & 1 & 3 & -1 \\
0 & -3 & -13 & -1 \\
0 & 0 & -8 & 0
\end{array}\right] . \begin{aligned}
& \text { Now by back-substitution } \\
& \text { we get } z=0, y=1 / 3, \\
& \text { and } x=-4 / 3 .
\end{aligned}
$$

6. $3 x+4 y-4 z=-1$
$6 x-2 y-2 z=-2$ $y-3 z=-3$

Solution:

In matrix form the given system becomes $\left[\begin{array}{rrrr}3 & 4 & -4 & 1 \\ 6 & -2 & -2 & -2 \\ 0 & 1 & -3 & -3\end{array}\right]$. Eliminate x in R_{2}.
$\mathrm{R}_{2}-2 \mathrm{R}_{1} \rightarrow \mathrm{R}_{2}\left[\begin{array}{rrrc}3 & 4 & -4 & 1 \\ 0 & -10 & 6 & 0 \\ 0 & 1 & -3 & -3\end{array}\right] \underset{\substack{\mathrm{R}_{2} \mapsto \mathrm{R}_{3} \\ 10 \mathrm{R}_{2}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}}}{\mathrm{R}_{3}}\left[\begin{array}{cccc}4 & 4 & -4 & 1 \\ 0 & 1 & -3 & -3 \\ 0 & 0 & -24 & -30\end{array}\right]$.
From $R_{3},-24 z=-30, z=30 / 24=5 / 4$. From $R_{2}, y=3 z-3=3(5 / 4)-3=3 / 4$.
Then from $R_{1}, 3 x+4 y-4 z=-1, x=(-3+5-1) / 3=1 / 3$.
7. $2 x-y-3 z=1$

$$
\begin{array}{r}
x+y+5 z=2 \\
3 x+2 z=3
\end{array}
$$

Solution:

$-R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}1 & 1 & 5 & 2 \\ 0 & -3 & -13 & -3 \\ 0 & 0 & 0 & 0\end{array}\right] . \begin{aligned} & R_{3} \text { represents the equation } 0 x+0 y+0 z=0 \text {. Therefore the } \\ & \text { system is dependent and has infinitely many solutions. If } \\ & z=k \text {, then } y=(-13 k+3) / 3, \text { and from } R_{1}, x=(3-2 k) / 3 .\end{aligned}$

